
M A N N I N G

Radu Gheorghe
Matthew Lee Hinman
Roy Russo

www.allitebooks.com

http://www.allitebooks.org

Elasticsearch in Action
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Elasticsearch
in Action

RADU GHEORGHE

MATTHEW LEE HINMAN

ROY RUSSO

M A N N I N G
SHELTER ISLAND
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Susan Conant
20 Baldwin Road Technical development editor: David Pombal
PO Box 761 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Valentin Crettaz
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291623
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 ...1

1 ■ Introducing Elasticsearch 3

2 ■ Diving into the functionality 20

3 ■ Indexing, updating, and deleting data 53

4 ■ Searching your data 83

5 ■ Analyzing your data 118

6 ■ Searching with relevancy 148

7 ■ Exploring your data with aggregations 179

8 ■ Relations among documents 215

PART 2 ...259

9 ■ Scaling out 261

10 ■ Improving performance 293

11 ■ Administering your cluster 340
v

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 .. 1

1 Introducing Elasticsearch 3
1.1 Solving search problems with Elasticsearch 4

Providing quick searches 5 ■ Ensuring relevant results 6
Searching beyond exact matches 7

1.2 Exploring typical Elasticsearch use cases 8
Using Elasticsearch as the primary back end 9
Adding Elasticsearch to an existing system 9
Using Elasticsearch with existing tools 11
Main Elasticsearch features 12 ■ Extending Lucene
functionality 13 ■ Structuring your data in Elasticsearch 15
Installing Java 15 ■ Downloading and starting
Elasticsearch 16 ■ Verifying that it works 16

1.3 Summary 18
vii

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 Diving into the functionality 20
2.1 Understanding the logical layout: documents, types,

and indices 22
Documents 23 ■ Types 24 ■ Indices 25

2.2 Understanding the physical layout: nodes and shards 25
Creating a cluster of one or more nodes 26 ■ Understanding
primary and replica shards 27 ■ Distributing shards in
a cluster 30 ■ Distributed indexing and searching 31

2.3 Indexing new data 32
Indexing a document with cURL 32 ■ Creating an index
and mapping type 35 ■ Indexing documents from the
code samples 36

2.4 Searching for and retrieving data 37
Where to search 38 ■ Contents of the reply 39
How to search 42 ■ Getting documents by ID 45

2.5 Configuring Elasticsearch 46
Specifying a cluster name in elasticsearch.yml 46
Specifying verbose logging via logging.yml 47
Adjusting JVM settings 47

2.6 Adding nodes to the cluster 48
Starting a second node 50 ■ Adding additional nodes 51

2.7 Summary 52

3 Indexing, updating, and deleting data 53
3.1 Using mappings to define kinds of documents 54

Retrieving and defining mappings 56 ■ Extending an
existing mapping 57

3.2 Core types for defining your own fields in documents 58
String 59 ■ Numeric 61 ■ Date 62 ■ Boolean 63

3.3 Arrays and multi-fields 63
Arrays 64 ■ Multi-fields 64

3.4 Using predefined fields 65
Controlling how to store and search your documents 66
Identifying your documents 68

3.5 Updating existing documents 70
Using the update API 72 ■ Implementing concurrency control
through versioning 74
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
3.6 Deleting data 78
Deleting documents 78 ■ Deleting indices 80
Closing indices 81 ■ Re-indexing sample documents 81

3.7 Summary 82

4 Searching your data 83
4.1 Structure of a search request 84

Specifying a search scope 85 ■ Basic components of
a search request 86 ■ Request body–based search request 88
Understanding the structure of a response 91

4.2 Introducing the query and filter DSL 92
Match query and term filter 92 ■ Most used basic queries
and filters 95 ■ Match query and term filter 102
Phrase_prefix query 103

4.3 Combining queries or compound queries 105
bool query 105 ■ bool filter 107

4.4 Beyond match and filter queries 109
Range query and filter 109 ■ Prefix query and filter 111
Wildcard query 112

4.5 Querying for field existence with filters 113
Exists filter 114 ■ Missing filter 114 ■ Transforming any
query into a filter 115

4.6 Choosing the best query for the job 116
4.7 Summary 117

5 Analyzing your data 118
5.1 What is analysis? 119

Character filtering 120 ■ Breaking into tokens 120
Token filtering 120 ■ Token indexing 120

5.2 Using analyzers for your documents 121
Adding analyzers when an index is created 122
Adding analyzers to the Elasticsearch configuration 123
Specifying the analyzer for a field in the mapping 124

5.3 Analyzing text with the analyze API 126
Selecting an analyzer 127 ■ Combining parts to create
an impromptu analyzer 127 ■ Analyzing based on a field’s
mapping 128 ■ Learning about indexed terms using the
terms vectors API 128
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
5.4 Analyzers, tokenizers, and token filters, oh my! 130
Built-in analyzers 130 ■ Tokenization 132
Token filters 134

5.5 Ngrams, edge ngrams, and shingles 141
1-grams 141 ■ Bigrams 141 ■ Trigrams 141
Setting min_gram and max_gram 141 ■ Edge ngrams 142
Ngram settings 142 ■ Shingles 143

5.6 Stemming 145
Algorithmic stemming 145 ■ Stemming with dictionaries 146
Overriding the stemming from a token filter 146

5.7 Summary 147

6 Searching with relevancy 148
6.1 How scoring works in Elasticsearch 149

How scoring documents works 149 ■ Term frequency 150
Inverse document frequency 150 ■ Lucene’s scoring
formula 151

6.2 Other scoring methods 152
Okapi BM25 154

6.3 Boosting 154
Boosting at index time 155 ■ Boosting at query time 156
Queries spanning multiple fields 157

6.4 Understanding how a document was scored
with explain 158
Explaining why a document did not match 160

6.5 Reducing scoring impact with query rescoring 160
6.6 Custom scoring with function_score 162

weight 162 ■ Combining scores 164 ■ field_value_factor 164
Script 165 ■ random 166 ■ Decay functions 167
Configuration options 169

6.7 Tying it back together 170
6.8 Sorting with scripts 171
6.9 Field data detour 172

The field data cache 173 ■ What field data is used for 174
Managing field data 174

6.10 Summary 178
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xi
7 Exploring your data with aggregations 179
7.1 Understanding the anatomy of an aggregation 182

Structure of an aggregation request 182 ■ Aggregations run
on query results 184 ■ Filters and aggregations 185

7.2 Metrics aggregations 186
Statistics 186 ■ Advanced statistics 188
Approximate statistics 189

7.3 Multi-bucket aggregations 192
Terms aggregations 193 ■ Range aggregations 200
Histogram aggregations 202

7.4 Nesting aggregations 204
Nesting multi-bucket aggregations 206 ■ Nesting aggregations to
get result grouping 208 ■ Using single-bucket aggregations 209

7.5 Summary 213

8 Relations among documents 215
8.1 Overview of options for defining relationships

among documents 216
Object type 217 ■ Nested type 218 ■ Parent-child
relationships 219 ■ Denormalizing 220

8.2 Having objects as field values 221
Mapping and indexing objects 222 ■ Searching in objects 223

8.3 Nested type: connecting nested documents 225
Mapping and indexing nested documents 226
Searches and aggregations on nested documents 229

8.4 Parent-child relationships: connecting separate
documents 236
Indexing, updating, and deleting child documents 238
Searching in parent and child documents 240

8.5 Denormalizing: using redundant data connections 247
Use cases for denormalizing 248 ■ Indexing, updating,
and deleting denormalized data 250 ■ Querying
denormalized data 253

8.6 Application-side joins 255
8.7 Summary 256
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSxii
PART 2 .. 259

9 Scaling out 261
9.1 Adding nodes to your Elasticsearch cluster 262

Adding nodes to your cluster 262

9.2 Discovering other Elasticsearch nodes 265
Multicast discovery 265 ■ Unicast discovery 266
Electing a master node and detecting faults 267
Fault detection 268

9.3 Removing nodes from a cluster 269
Decommissioning nodes 270

9.4 Upgrading Elasticsearch nodes 274
Performing a rolling restart 274 ■ Minimizing recovery time
for a restart 276

9.5 Using the _cat API 276
9.6 Scaling strategies 279

Over-sharding 279 ■ Splitting data into indices and shards 280
Maximizing throughput 281

9.7 Aliases 282
What is an alias, really? 283 ■ Alias creation 284

9.8 Routing 286
Why use routing? 287 ■ Routing strategies 287
Using the _search_shards API to determine where a search
is performed 289 ■ Configuring routing 290
Combining routing with aliases 291

9.9 Summary 292

10 Improving performance 293
10.1 Grouping requests 294

Bulk indexing, updating, and deleting 295
Multisearch and multiget APIs 299

10.2 Optimizing the handling of Lucene segments 301
Refresh and flush thresholds 302 ■ Merges and
merge policies 305 ■ Store and store throttling 308

10.3 Making the best use of caches 312
Filters and filter caches 312 ■ Shard query cache 318
JVM heap and OS caches 321 ■ Keeping caches up
with warmers 323
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xiii
10.4 Other performance tradeoffs 325
Big indices or expensive searches 326 ■ Tuning scripts or
not using them at all 329 ■ Trading network trips for less
data and better distributed scoring 333 ■ Trading memory
for better deep paging 336

10.5 Summary 338

11 Administering your cluster 340
11.1 Improving defaults 341

Index templates 341 ■ Default mappings 344

11.2 Allocation awareness 347
Shard-based allocation 347 ■ Forced allocation awareness 349

11.3 Monitoring for bottlenecks 350
Checking cluster health 350 ■ CPU: slow logs, hot threads,
and thread pools 353 ■ Memory: heap size, field, and filter
caches 356 ■ OS caches 360 ■ Store throttling 361

11.4 Backing up your data 362
Snapshot API 362 ■ Backing up data to a shared file system 362
Restoring from backups 366 ■ Using repository plugins 367

11.5 Summary 368

appendix A Working with geospatial data 369
appendix B Plugins 383
appendix C Highlighting 390
appendix D Elasticsearch monitoring plugins 410
appendix E Turning search upside down with the percolator 419
appendix F Using suggesters for autocomplete and did-you-mean

functionality 437

index 461
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

preface
While writing this book, my objective was to provide you the information I needed
when I started using Elasticsearch: what its main features are and how they work
under the hood. To give you a better overview of this objective, let me tell you a more
detailed story of how this book came to life.

 I first met Elasticsearch in 2011 while working on a project for centralizing logs.
My colleague Mihai Sandu showed me Graylog, which used Elasticsearch for log
search, and setting everything up was extremely easy. Two servers could handle all our
logging needs at the time, but we expected the data volume to grow hundreds of times
in about one year. And it did. On top of that, we had more and more complex analysis
requirements, so we quickly found out that tuning and scaling the setup required a
deep understanding of Elasticsearch and its features.

 There was no book to teach us that, so we had to learn the hard way: lots of exper-
iments, lots of questions and answers to the mailing list. The upside was that I got to
know a lot of nice people that posted there regularly. This is how I came to work at
Sematext, where I could concentrate on Elasticsearch full-time, and this is why Man-
ning asked me if I would be interested in writing about Elasticsearch.

 Of course I was. They warned me it was hard work, but told me that Lee Hinman
was also interested, so we joined forces. With two authors, we thought it was going to
be easy, especially as Lee and I really clicked and provided useful feedback to one
another. Little did we know that it’s much easier to present features in the early chap-
ters than to combine those features into best practices for various use cases in later
chapters. Then, with feedback from our reviewers, we found that it’s even more work
xv

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACExvi
to fit everything together, so our pace became slower and slower. That’s when Roy
Russo joined us and helped with that final push.

 After two and a half years of early mornings, late nights, and weekends, I can finally
say we’re done. It was a tough experience, but a rich one as well. I would surely have
loved to have this book in my hands four years ago, and I hope you’ll enjoy it, too.

RADU GHEORGHE
Licensed to Thomas Snead <n.ordickan@gmail.com>

acknowledgments
Many people provided their invaluable support to make this book possible:

■ Susan Conant, our development editor at Manning, who supported us in so
many ways: by providing valuable feedback on draft chapters, helping to plan
book and individual chapter structures, giving encouragement, advising us on
upcoming steps, helping us overcome bumps in the road, and so on

■ Jettro Coenradie, our technical editor, who helped us review big chunks of the
manuscript before it went to production and again helped with the final steps
before the book went to press

■ Valentin Crettaz, who helped with his thorough technical proofread
■ Our Manning Early Access Program (MEAP) readers who posted so many help-

ful comments in the Author Online forum
■ The reviewers from the development process who provided such good feedback

that I can’t even begin to imagine how the book would look without them:
Achim Friedland, Alan McCann, Artur Nowak, Bhaskar Karambelkar, Daniel
Beck, Gabriel Katenbaumn, Gianluca Rhigetto, Igor Motov, Jeelani Shaik, Joe
Gallo, Konstantin Yakushev, Koray Güclü, Michael Schleichardt, Paul Stadig,
Ray Lugo Jr., Sen Xu, and Tanguy Leroux

RADU GHEORGHE

I’d like to express my thanks in chronological order. To my colleagues from Avira:
Mihai Sandu, Mihai Efrim, Martin Ahrens, Matthias Ollig and many others, for sup-
porting me in learning about Elasticsearch and tolerating my not-always-successful
xvii

Licensed to Thomas Snead <n.ordickan@gmail.com>

ACKNOWLEDGMENTSxviii
experiments. To my colleagues from Sematext: Otis Gospodnetić, who supported me
in learning and interacting with the community, and Rafał Kuć (aka Master Rafał) for
his invaluable tips and tricks. Finally, I’d like to thank my family for supporting me in
so many ways that I can barely scratch the surface here: my parents, Nicoleta and
Mihai Gheorghe, and my in-laws, Mădălina and Adrian Radu, for providing good
food, quiet spaces, and the all-important moral support. My wife Alexandra, for being
a real hero: she somehow managed to write her own stuff and still take care of every-
thing in order for me to write. Last but not least, my son Andrei, now 6, for his under-
standing and his creative solutions on spending time together, like working on his
own book next to me.

LEE HINMAN

First and foremost I’d like to give my sincerest thanks to my wife Delilah for encourag-
ing me in this endeavor and for being my adventuring partner. You have given me so
much support in this and so many other parts of my life. Thank you for continuing to
encourage me throughout the birth of our daughter, Vera Ovelia. I’d also like to
thank all of the people who have contributed to Elasticsearch. Without you, open
source software would not be possible. I’m honored to contribute to such a wide-
reaching and powerful piece of software.

ROY RUSSO

I would like to thank my daughters Olivia and Isabella, my son Jacob, and my wife
Roberta, for standing beside me throughout my career and acting as a source of inspi-
ration and motivation. You guys make the impossible possible with your support, love,
and understanding.
Licensed to Thomas Snead <n.ordickan@gmail.com>

about this book
Since it came out in 2010, Elasticsearch has become increasingly popular. It’s being
used in a variety of setups, from product search—which is the traditional use case for a
search engine—to real-time analytics of social media, application logs, and other flow-
ing data. The strong points of Elasticsearch have always been its distributed model—
which makes it scale out easily and efficiently—as well as its rich analytics functionality.
All of this was built on top of the already established Apache Lucene search engine
library. Lucene has evolved during this time as well, making it possible to process the
same amount of data with less CPU, memory, and disk space.

 Elasticsearch in Action covers all the major features of Elasticsearch, from rele-
vancy tuning by using different analyzers and query types to using aggregations for
real-time analytics, as well as more “exotic” features, like geo-spatial search and doc-
ument percolation.

 You’ll quickly find that Elasticsearch is easy to get started with. You can get your
documents in, search them, build statistics, and even distribute and replicate your
data onto multiple machines in a matter of hours. Default behavior and settings are
very developer-friendly, making proof-of-concepts that much easier to build.

 Moving from prototypes to production is often more difficult, as you’ll bump
into various functionality or performance limitations. That’s why we explain how each
feature works under the hood, so you can tweak the right knobs in order to get good
relevance out of your searches and good performance for both reads and writes to
your cluster.
xix

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
 What exactly are the features we’ll cover? Let’s look at the roadmap of this book
for more details.

Roadmap
Elasticsearch in Action is divided into two parts: “Core functionality” and “Advanced
functionality.” We recommend reading chapters in order, as the functionality discussed
in one chapter often depends on the concepts presented in previous chapters. Each
chapter contains code listings and snippets you can follow if you prefer a hands-on
approach, but it’s not necessary to have a laptop with you in order to learn the con-
cepts and how Elasticsearch works.

 The first part explains the core features—how to model and index data so you can
search and analyze it as your use case requires. By the end of it, you’ll understand the
building blocks of Elasticsearch functionality:

■ Chapter 1 gives an overview of what a search engine does in general and Elastic-
search’s features in particular. By the end of it you should know what kind of
problems you can solve with Elasticsearch.

■ Chapter 2 gets your feet wet regarding the major functionality: indexing docu-
ments, searching them, analyzing data via aggregations, and scaling out to mul-
tiple nodes.

■ Chapter 3 covers the options you have while indexing, updating, and deleting
your data. You’ll learn what kind of fields you can have in your documents, as
well as what happens when you’re writing them.

■ In chapter 4 you’ll dive deeper into the realm of full-text search. You’ll discover
the important types of queries and filters and learn how they work and when to
use which.

■ Chapter 5 explains how analysis breaks down the text from both documents
and queries into the tokens used for searching. You’ll learn how to use different
kinds of analyzers—as well as how to build your own—in order to fully utilize
Elasticsearch’s full text search potential.

■ Chapter 6 helps you complete your full text search skills by focusing on rele-
vancy. You’ll learn about the factors affecting a document’s score and how to
manipulate them using different scoring algorithms, boosting a particular
query or field, or using values from the document itself—such as the number of
likes or retweets—to boost the score.

■ Chapter 7 shows how to use aggregations to perform real-time analytics. You’ll
learn how to couple aggregations with queries and how to nest them in order to
find the number of needles in the haystack . . . dropped by someone from
Poland . . . two years ago.

■ Chapter 8 deals with relational data, like bands and their albums. You’ll learn
how to use Elasticsearch features—such as nested documents and parent-child
relationships—as well as general NoSQL techniques (such as denormalizing or
application-side joins) to index and search data that isn’t flat.
Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xxi
The second part helps you get the core functionality out to production. In doing so,
you’ll learn more about how each feature works, as well as its impact on performance
and scalability:

■ Chapter 9 deals with scaling out to multiple nodes. You’ll learn how to shard
and replicate your indices—for example, by oversharding or using time-based
indices—so that today’s design can cope with next year’s data.

■ In chapter 10 you’ll find tricks that will help you squeeze more performance
out of your cluster. Along the way, you’ll learn how Elasticsearch uses caches
and writes data to disk, as well as various trade-offs you can make to tweak Elas-
ticsearch for your use case.

■ Chapter 11 shows how to monitor and administer your cluster in production.
We’ll cover the important metrics you should watch, how to back up and restore
your data, and how to use shortcuts such as index templates and aliases.

The book’s six appendixes cover features you should know about, but these features
may not be relevant to some use cases. We hope that the term “appendix” doesn’t mis-
lead you into thinking we cover these features superficially. As with the rest of the
book, we’ll dive into the details of how each feature works under the hood:

■ Appendix A is about geospatial search and aggregations.
■ Appendix B shows how to manage Elasticsearch plugins.
■ In Appendix C you’ll learn about highlighting query terms in your search

results.
■ Appendix D introduces third-party monitoring tools that you may want to use in

production to help you manage Elasticsearch.
■ Appendix E explains how to use the Percolator in order to match few docu-

ments against many queries.
■ Finally, appendix F explains how to use different suggesters in order to imple-

ment did-you-mean and autocomplete functionality.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts.

 Source code for all the working examples in the book and instructions to run them
are available at https://github.com/dakrone/elasticsearch-in-action. You can also down-
load the code from the publisher’s website at www.manning.com/books/elasticsearch-
in-action.

 The code snippets and the source code will work on Elasticsearch 1.5. They should
work on all the versions of the 1.x branch. At the time of this writing, the roadmap for
version 2.0 is becoming clearer, and it’s taken into account: we skipped features that
will go away, such as configuration options on most predefined fields. In other places,
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
http://www.manning.com/books/elasticsearch-in-action
http://www.manning.com/books/elasticsearch-in-action

ABOUT THIS BOOKxxii
such as filter caches, where 1.x and 2.x simply behave differently, we specifically pointed
this out in a callout.

Author Online
Purchase of Elasticsearch in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and other users. To access the Author
Online forum and subscribe to it, point your web browser to www.manning.com/
books/elasticsearch-in-action. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and the authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.manning.com/books/elasticsearch-in-action
http://www.manning.com/books/elasticsearch-in-action

about the cover illustration
The figure on the cover of Elasticsearch in Action is captioned “A man from Croatia.”
The illustration is taken from a reproduction of an album of Croatian traditional cos-
tumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethno-
graphic Museum in Split, Croatia, in 2003. The illustrations were obtained from a
helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
palace from around AD 304. The book includes finely colored illustrations of figures
from different regions of Croatia, accompanied by descriptions of the costumes and
of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxiii

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 1

In this part, we will cover what Elasticsearch can do for you in terms of func-
tionality. We’ll start with more general concepts in chapter 1, where we’ll
explore how Elasticsearch is typically used as a search engine, and then move on
to how to model, index, search, and analyze data efficiently. By the end of part 1,
you’ll have a deep understanding of what Elasticsearch can offer from a func-
tionality standpoint and how you can use it to solve your search and real-time
analytics problems.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Introducing Elasticsearch
We use search everywhere these days. And that’s a good thing, because search
helps you finish tasks quickly and easily. Whether you’re buying something from
an online shop or visiting a blog, you expect to have a search box somewhere to
help you find what you’re looking for without scanning the entire website. Maybe
it’s me, but when I (Radu) wake up in the morning, I wish I could enter the
kitchen and type in “bowl” in a search box somewhere and have my favorite bowl
highlighted.

 We’ve also come to expect those search boxes to be smart. I don’t want to have
to type the entire word “bowl;” I expect the search box to come up with sugges-
tions, and I don’t want results and suggestions to come to me in random order. I

This chapter covers
■ Understanding search engines and the issues

they address
■ How Elasticsearch fits in the context of search

engines
■ Typical scenarios for Elasticsearch
■ Features Elasticsearch provides
■ Installing Elasticsearch
3

Licensed to Thomas Snead <n.ordickan@gmail.com>

4 CHAPTER 1 Introducing Elasticsearch
want the search to be smart and give me the most relevant results first—to guess what
I want, if that’s possible. For example, if I search for “laptop” from an online shop but
have to scroll through laptop accessories before I get to a laptop, I’m likely to go
somewhere else after the first page of results. And this need for relevant results and
suggestions isn’t only because we’re in a hurry and spoiled with good search inter-
faces; it’s also because there’s increasingly more stuff to choose from. For example, a
friend asked me to help her buy a new laptop. Typing “best laptop for my friend” in
the search box of an online store that sells thousands of laptops wouldn’t be effective.
Good keyword searching is often not enough; you need some statistics on the results
so you can narrow them down to what the user is interested in. I narrowed down my
laptop search by selecting the size of the screen, the price range, and so on, until I
only had five or so laptops to choose from.

 Finally, there’s the matter of performance—because nobody wants to wait. I’ve
seen websites where you search for something and get the results in few minutes. Min-
utes! For a search!

 If you want to provide search for your data, you’ll have to deal with all these issues:
returning relevant search results, returning statistics, and doing all that quickly. This is
where search engines like Elasticsearch come into play because they’re built to meet
exactly those challenges. You can deploy a search engine on top of a relational data-
base to create indices and speed up the SQL queries. Or you can index data from your
NoSQL data store to add search capabilities there. You can do that with Elasticsearch,
and it works well with document-oriented stores like MongoDB because data is repre-
sented in Elasticsearch as documents, too. Modern search engines like Elasticsearch
also do a good job of storing your data so you can use it as a NoSQL data store with
powerful search capabilities.

 Elasticsearch is open-source and distributed, and it’s built on top of Apache
Lucene,1 an open-source search engine library, which allows you to implement search
functionality in your own Java application. Elasticsearch takes this Lucene function
and extends it to make storing, indexing, and searching faster, easier, and, as the
name suggests, elastic. Also, your application doesn’t need to be written in Java to
work with Elasticsearch; you can send data over HTTP in JSON to index, search, and
manage your Elasticsearch cluster.

 This chapter expounds on these searching and data features, and you’ll learn how
to use them throughout this book. First, let’s take a closer look at the challenges search
engines are typically confronted with and Elasticsearch’s approach to solving them.

1.1 Solving search problems with Elasticsearch
To get a better idea of how Elasticsearch works, let’s look at an example. Imagine that
you’re working on a website that hosts blogs and you want to let users search across
the entire site for specific posts. Your first task is to implement keyword search. For

1 More information about Apache Lucene can be found at http://lucene.apache.org/core/.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://lucene.apache.org/core/

5Solving search problems with Elasticsearch
example, if a user searches for “elections,” you’d better return all posts containing
that word.

 A search engine will do that for you, but for a robust search feature, you need more
than that: results need to come in quickly, and they need to be relevant. It’s also nice
to provide features that help users search when they don’t know the exact words of
what they’re looking for. Those features include detecting typos, providing sugges-
tions, and breaking down results into categories.

TIP In this chapter you’ll get an overview of Elasticsearch’s features. If you
want to get practical and jump to installing it, skip to section 1.5. You’ll find
the installation procedure surprisingly easy. And you can always come back
here for the high-level overview.

1.1.1 Providing quick searches

If you have a huge number of posts on your site, searching through all of them for the
word “elections” can take a long time, and you don’t want your users to wait. That’s
where Elasticsearch helps because it uses Lucene, a high-performance search engine
library, to index all your data by default.

 An index is a data structure which you create along with your data and which is
meant to allow faster searches. You can add indices to fields in most databases, and
there are several ways to do it. Lucene does it with inverted indexing, which means it
creates a data structure where it keeps a list of where each word belongs. For example,
if you need to search for blog posts by their tags, using inverted indexing might look
like table 1.1.

If you search for blog posts that have an elections tag, it’s much faster to look at the
index rather than looking at each word of each blog post, because you only have to
look at the place where the tag is elections, and you’ll get all the corresponding blog
posts. This speed gain makes sense in the context of a search engine. In the real
world, you’re rarely searching for only one word. For example, if you’re searching for
“Elasticsearch in Action,” three-word lookups imply multiplying your speed gain by

Table 1.1 Inverted index for blog tags

Raw data Index data

Blog Post ID Tags Tags Blog Post IDs

1 elections elections 1,3

2 peace peace 2,3,4

3 elections, peace

4 peace
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Introducing Elasticsearch
three. All this may seem a bit complex at this point, but we’ll clear up the details when
we discuss indexing in chapter 3 and searching in chapter 4.

 An inverted index is appropriate for a search engine when it comes to relevance,
too. For example, when you’re looking up a word like “peace,” not only will you see
which document matches, but you’ll also get the number of matching documents for
free. This is important because if a word occurs in most documents, it’s probably less
relevant. Let’s say you search for “Elasticsearch in Action.” and a document contains
the word “in”—along with a million other documents. At this point, you know that
“in” is a common word, and the fact that this document matched doesn’t say much
about how relevant it is to your search. In contrast, if it contains “Elasticsearch” along
with a hundred others, you know you’re getting closer to relevant documents. But it’s
not “you” who has to know you’re getting closer; Elasticsearch does that for you. You’ll
learn all about tuning data and searches for relevancy in chapter 6.

 That said, the tradeoff for improved search performance and relevancy is that the
index will take up disk space and adding new blog posts will be slower because you
have to update the index after adding the data itself. On the upside, tuning can make
Elasticsearch faster, both when it comes to indexing and searching. We’ll discuss tun-
ing in great detail in chapter 10.

1.1.2 Ensuring relevant results

Then there’s the hard part: how do you make the blog posts that are about elections
appear before the ones that merely contain the word election? With Elasticsearch, you
have a few algorithms for calculating the relevancy score, which is used, by default, to
sort the results.

 The relevancy score is a number assigned to each document that matches your
search criteria and indicates how relevant the given document is to the criteria. For
example, if a blog post contains “elections” more times than another, it’s more likely
to be about elections. Figure 1.1 shows an example from DuckDuckGo.

 By default, the algorithm used to calculate a document’s relevancy score is TF-IDF.
We’ll discuss scoring and TF-IDF more in chapters 4 and 6, which are about searching

Figure 1.1 More occurrences of the searched terms usually rank the document higher.
Licensed to Thomas Snead <n.ordickan@gmail.com>

7Solving search problems with Elasticsearch
and relevancy, but here’s the basic idea: TF-IDF stands for term frequency–inverse docu-
ment frequency, which are the two factors that influence relevancy score.

■ Term frequency—The more times the words you’re looking for appear in a docu-
ment, the higher the score.

■ Inverse document frequency—The weight of each word is higher if the word is
uncommon across other documents.

For example, if you’re looking for “bicycle race” on a cyclist’s blog, the word “bicycle”
counts much less for the score than “race.” But the more times both words appear in a
document, the higher that document’s score.

 In addition to choosing an algorithm, Elasticsearch provides many other built-in
features to influence the relevancy score to suit your needs. For example, you can
“boost” the score of a particular field, such as the title of a post, to be more important
than the body. This gives higher scores to documents that match your search criteria
in the title, compared to similar documents that match only the body. You can make
exact matches count more than partial matches, and you can even use a script to add
custom criteria to the way the score is calculated. For example, if you let users like
posts, you can boost the score based on the number of likes, or you can make newer
posts have higher scores than similar, older posts.

 Don’t worry about the mechanics of any of these features right now; we discuss rel-
evancy in great detail in chapter 6. For now, let’s focus on what you can do with Elastic-
search and when you’d want to use those features.

1.1.3 Searching beyond exact matches

With Elasticsearch you have options to make your searches intuitive and go beyond
exactly matching what the user types in. These options are handy when the user enters
a typo or uses a synonym or a derived word different than what you’ve stored. They’re
also handy when the user doesn’t know exactly what to search for in the first place.

HANDLING TYPOS

You can configure Elasticsearch to be tolerant of variations instead of looking for only
exact matches. A fuzzy query can be used so a search for “bicycel” will match a blog
post about bicycles. We explore fuzzy queries and other features that make your
searches relevant in chapter 6.

SUPPORTING DERIVATIVES

You can also use analysis, covered in chapter 5, to make Elasticsearch understand that
a blog with “bicycle” in its title should also match queries that mention “bicyclist” or
“cycling.” You probably noticed that in figure 1.1, where “elections” matched “elec-
tion” as well. You might have also noticed that matching terms are highlighted in
bold. Elasticsearch can do that too—we’ll cover highlighting in appendix C.

USING STATISTICS

When users don’t know what to search for, you can help them in a number of ways.
One way is to present statistics through aggregations, which we cover in chapter 7.
Licensed to Thomas Snead <n.ordickan@gmail.com>

8 CHAPTER 1 Introducing Elasticsearch
Aggregations are a way to get counters from the results of your query, like how many
topics fall into each category or the average number of likes and shares for each of
those categories. Imagine that upon entering your blog, users see popular topics listed
on the right-hand side. One topic may be cycling. Those interested in cycling would
click that topic to narrow the results. Then, you might have another aggregation to
separate cycling posts into “bicycle reviews,” “cycling events,” and so on.

PROVIDING SUGGESTIONS

Once users start typing, you can help them discover popular searches and results.
You can use suggestions to predict their searches as they type, as most search
engines on the web do. You can also show popular results as they type, using special
query types that match prefixes, wild cards, or regular expressions. In appendix F,
we’ll also discuss suggesters, which are faster-than-normal queries for autocomplete
and did-you-mean functionality.

 Now that we’ve discussed what high-level features Elasticsearch provides, let’s look
at how those features are typically used in production.

1.2 Exploring typical Elasticsearch use cases
We’ve already established that storing and indexing your data in Elasticsearch is a
good way to provide quick and relevant results to your searches. But in the end, Elas-
ticsearch is just a search engine, and you’ll never use it on its own. Like any other data
store, you need a way to feed data into it, and you probably need to provide an inter-
face for the users searching that data.

 To get an idea of how Elasticsearch might fit into a bigger system, let’s consider
three typical scenarios:

■ Elasticsearch as the primary back end for your website—As we discussed, you may have
a website that allows people to write blog posts, but you also want the ability to
search through the posts. You can use Elasticsearch to store all the data related
to these posts and serve queries as well.

■ Adding Elasticsearch to an existing system—You may be reading this book because
you already have a system that’s crunching data and you want to add search.
We’ll look at a couple of overall designs on how that might be done.

■ Elasticsearch as the back end of a ready-made solution built around it—Because Elastic-
search is open-source and offers a straightforward HTTP interface, a big ecosys-
tem supports it. For example, Elasticsearch is popular for centralizing logs;
given the tools already available that can write to and read from Elasticsearch,
other than configuring those tools to work the way you want, you don’t need to
develop anything.

Let’s take a closer look at each of these scenarios.
Licensed to Thomas Snead <n.ordickan@gmail.com>

9Exploring typical Elasticsearch use cases
1.2.1 Using Elasticsearch as the primary back end

Traditionally, search engines are deployed on top of well-established data stores to pro-
vide fast and relevant search capability. That’s because historically search engines haven’t
offered durable storage or other features that are often needed, such as statistics.

 Elasticsearch is one of those modern search engines that provide durable storage,
statistics, and many other features you’ve come to expect from a data store. If you’re
starting a new project, we recommend that you consider using Elasticsearch as the
only data store to help keep your design as simple as possible. This might not work
well for all use cases—for instance, when you have lots of updates—so you can also use
Elasticsearch on top of another data store.

NOTE Like other NoSQL data stores, Elasticsearch doesn’t support transac-
tions. In chapter 3, you’ll see how you can use versioning to manage concur-
rency, but if you need transactions, consider using another database as the
“source of truth.” Also, regular backups are a good practice when you’re
using a single data store. We’ll discuss backups in chapter 11.

Let’s return to the blog example: you can store newly written blog posts in Elastic-
search. Similarly, you can use Elasticsearch to retrieve, search, or do statistics through
all that data, as shown in figure 1.2.

What happens if a server goes down? You can get fault tolerance by replicating your
data to different servers. Many other features make Elasticsearch a tempting NoSQL
data store. It can’t be great for everything, but you should weigh whether including
another data store in your overall design is worth the extra complexity.

1.2.2 Adding Elasticsearch to an existing system

By itself, Elasticsearch may not always provide all the functionality you need from a
data store. Some situations may require you to use Elasticsearch in addition to another
data store.

 For example, transaction support and complex relationships are features that Elas-
tic search doesn’t currently support, at least in version 1. If you need those features,
consider using Elasticsearch along with a different data store.

Search for

a blog post

Index a new

blog post

Web application

Elasticsearch

Figure 1.2 Elasticsearch as the
only back end storing and indexing
all your data
Licensed to Thomas Snead <n.ordickan@gmail.com>

10 CHAPTER 1 Introducing Elasticsearch
Or you may already have a complex system that works, but you want to add search. It
might be risky to redesign the entire system for the sole purpose of using Elasticsearch
alone (though you might want to do that over time). The safer approach is to add
Elasticsearch to your system and make it work with your existing components.

 Either way, if you have two data stores, you’ll have to find a way to keep them syn-
chronized. Depending on what your primary data store is and how your data is laid
out, you can deploy an Elasticsearch plugin to keep the two entities synchronized, as
illustrated in figure 1.3.

 For example, suppose you have an online retail store with product information
stored in an SQL database. You need fast and relevant searching, so you install Elastic-
search. To index the data, you need to deploy a synchronizing mechanism, which can
be an Elasticsearch plugin or a custom service that you build. You’ll learn more about
plugins in appendix B and about dealing with indexing and updating from your own
application in chapter 3. This synchronizing mechanism could pull all the data corre-
sponding to each product and index it in Elasticsearch, where each product is stored
as a document.

 When a user types in search criteria on the web page, the storefront web applica-
tion queries Elasticsearch for that criteria. Elasticsearch returns a number of product
documents that match the criteria, sorted in the way you prefer. Sorting can be based
on a relevance score that indicates how many times the words people searched for
appear in each product, or anything stored in the product document, such as how
recently the product was added, the average rating, or even a combination of those.

 Inserting or updating information can still be done on the “primary” SQL data-
base, so you can use Elasticsearch solely for handling searches. It’s up to the synchro-
nizing mechanism to keep Elasticsearch up to date with the latest changes.

 When you need to integrate Elasticsearch with other components, you can check
for existing tools that may already do what you need. As we’ll explore in the next

Web application

Elasticsearch

Synchronizing mechanism

(can be an Elasticsearch

plugin or your own service)

Search

Update

financial

records

Insert

new post

SQL database

Figure 1.3 Elasticsearch
in the same system with
another data store
Licensed to Thomas Snead <n.ordickan@gmail.com>

11Exploring typical Elasticsearch use cases
section, there’s a strong community building tools for Elasticsearch, and sometimes
you don’t have to build any custom component.

1.2.3 Using Elasticsearch with existing tools

In some use cases, you don’t have to write a single line of code to get a job done with
Elasticsearch. Many tools are available that work with Elasticsearch, so you don’t have
to write yours from scratch.

 For example, say you want to deploy a large-scale logging framework to store, search,
and analyze a large number of events. As shown in figure 1.4, to process logs and output
to Elasticsearch, you can use logging tools such as Rsyslog (www.rsyslog.com), Logstash2

(www.elastic.co/products/logstash), or Apache Flume (http://flume.apache.org). To
search and analyze those logs in a visual interface, you can use Kibana (www.elastic.co/
products/kibana).3

The fact that Elasticsearch is open-source—under the Apache 2 license, to be pre-
cise—isn’t the only reason that so many tools support it. Even though Elasticsearch is
written in Java, there’s more than a Java API that lets you work with it. It also exposes a
REST API, which any application can access, no matter the programming language it
was written in.

 What’s more, the REST requests and replies are typically in JSON (JavaScript Object
Notation) format. Typically, a REST request has its payload in JSON, and replies are
also a JSON document.

2 Ryslog home page: www.rsyslog.com
3 Kibana home page: www.elastic.co/products/kibana

Rsyslog

Logstash

Apache Flume

Elasticsearch

Kibana

Figure 1.4 Elasticsearch in a system of logging tools that support Elasticsearch out of
the box
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.elastic.co/products/logstash
http://flume.apache.org
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
http://www.rsyslog.com
http://www.rsyslog.com

12 CHAPTER 1 Introducing Elasticsearch

The v
the

an
con
the
For example, a log event might look like this when you index it in Elasticsearch:

{
 "message": "logging to Elasticsearch for the first time",
 "timestamp": "2013-08-05T10:34:00"
}

NOTE Throughout this book, JSON field names are shown in blue and their
values are in red to make the code easier to read.

A search request for log events with a value of first in the message field would look
like this:

{
 "query": {
 "match": {
 "message": "first"
 }
 }
}

Sending data and running queries by sending JSON objects over HTTP makes it easy
for you to extend anything—from a syslog daemon like Rsyslog to a connecting frame-
work like Apache ManifoldCF (http://manifoldcf.apache.org)—to interact with Elas-
ticsearch. If you’re building a new application from scratch or want to add search to
an existing application, the REST API is one of the features that makes Elasticsearch
appealing. In the next section we’ll look at other such features.

1.2.4 Main Elasticsearch features

Elasticsearch allows you to easily access Lucene’s functionality for indexing and
searching your data. On the indexing side, you have lots of options for how to process
the text in them and how to store that processed text. When searching, you have many

JSON and YAML
JSON is a format for expressing data structures. A JSON object typically contains keys
and values, where values can be strings, numbers, true/false, null, another object,
or an array. For more details about the JSON format, visit http://json.org/.

JSON is easy for applications to parse and generate. YAML (YAML Ain’t Markup Lan-
guage) is also supported for the same purpose. To activate YAML, add the format
=yaml parameter to the HTTP request. For more details on YAML, visit http://yaml.org.
Although JSON is typically used for HTTP communication, the configuration files are
usually written in YAML. In this book we stick with the popular formats: JSON for LHTT
communication and YAML for configuration.

A field with a
string value

A string value can be a date,
which Elasticsearch evaluates
automatically.

alue of
 query
field is
 object
taining
 match

field.

The match field contains
another object in which first
is the value of message.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://json.org/
http://yaml.org
http://manifoldcf.apache.org

13Exploring typical Elasticsearch use cases
queries and filters to choose from. Elasticsearch exposes this functionality through
the REST API, allowing you to structure queries in JSON and adjust most of the config-
uration though the same API.

 On top of what Lucene provides, Elasticsearch adds its own, higher-level function-
ality, from caching to real-time analytics. In chapter 7 you’ll learn how to do these ana-
lytics through aggregations, which can give you results like the most popular blog tags,
the average popularity of a certain group of posts, and endless combinations such
as the average popularity of posts for each tag.

 Another level of abstraction is the way you can organize documents: multiple indi-
ces can be searched separately or together, and you can put different types of docu-
ments within each index.

 Finally, Elasticsearch is, as the name suggests, elastic. It’s clustered by default—you
call it a cluster even if you run it on a single server—and you can always add more serv-
ers to increase capacity or fault tolerance. Similarly, you can easily remove servers
from the cluster to reduce costs if you have lower load.

 We’ll discuss all these features in great detail in the rest of the book—scaling, in
particular, is addressed in chapter 9—but before that, let’s have a closer look and see
how these features are useful.

1.2.5 Extending Lucene functionality

In many use cases, users search based on multiple criteria. For example, you can
search for multiple words in multiple fields; some criteria would be mandatory and
some would be optional. One of the most appreciated features of Elasticsearch is its
well-structured REST API: you can structure your queries in JSON to combine different
types of queries in many ways. We’ll show you how in chapter 4, and you’ll also see
how you can use filters to include or exclude results in a cheap and cacheable way.
Your JSON search can include both queries and filters, as well as aggregations, which
generate statistics from matching documents.

 Through the same REST API you can read and change many settings (as you’ll see
in chapter 11), as well as the way documents are indexed.

What about Apache Solr?
If you’ve already heard about Lucene, you’ve probably also heard about Solr, which
is an open-source, distributed search engine based on Lucene. In fact, Lucene and
Solr merged as a single Apache project in 2010, so you might wonder how Elastic-
search compares with Solr.

Both search engines provide similar functionality, and features evolve quickly with
each new version. You can search the web for comparisons, but we recommend tak-
ing them with a grain of salt. Besides being tied to particular versions, which makes
such comparisons obsolete in a matter of months, many of them are biased for var-
ious reasons.
Licensed to Thomas Snead <n.ordickan@gmail.com>

14 CHAPTER 1 Introducing Elasticsearch
When it comes to the way documents are indexed, one important aspect is analysis.
Through analysis, the words from the text you’re indexing become terms in Elastic-
search. For example, if you index the text “bicycle race,” analysis may produce the
terms “bicycle,” “race,” “cycling,” and “racing,” and when you search for any of those
terms, the corresponding document is included in the results. The same analysis pro-
cess applies when you search, as illustrated in figure 1.5. If you enter “bicycle race,”
you probably don’t want to search for only the exact match. Maybe a document that
contains both those words somewhere will do.

 The default analyzer first breaks text into words by looking for common word sep-
arators, such as a space or a comma. Then it lowercases those words, so that “Bicycle
Race” generates “bicycle” and “race.” There are many more analyzers, and you can
also build your own. We’ll show you how in chapter 5.

 At this point you might want to know more about what’s in that “indexed data” box
shown in figure 1.5 because it sounds quite vague. As we’ll discuss next, data is orga-
nized in documents. By default, Elasticsearch stores your documents as they are, and
it also puts all the terms resulting from analysis into the inverted index to enable the
all-important fast and relevant searches. We go into more detail about indexing and

(continued)

That said, a few historical facts help explain the origins of the two products. Solr was
created in 2004 and Elasticsearch in 2010. When Elasticsearch came around, its
distributed model, which is discussed later in this chapter, made it much easier to
scale out than any of its competitors, which suggests the “elastic” part of the name.
In the meantime, however, Solr added sharding with version 4.0, which makes the
“distributed” argument debatable, like many other aspects.

At the time of this writing, Elasticsearch and Solr each have features that the other
one doesn’t, and choosing between them may come down to the specific functionality
you need at a given point in time. For many use cases, the functionality you need is
covered by both, and, as is often the case with competitors, choosing between them
becomes a matter of taste. If you want to read more about Solr, we recommend Solr
in Action by Trey Grainger and Timothy Potter (Manning, 2014).

Indexing

application

Search

application
Analysis Analysis

Indexed

data

New post:

“bicycle race”

Search request:

“bicycle show”

Elasticsearch

bicycle

race

bicycle

show

Figure 1.5 Analysis breaks text into words, both when you’re indexing and when you’re searching.
Licensed to Thomas Snead <n.ordickan@gmail.com>

15Exploring typical Elasticsearch use cases
storing data in chapter 3. For now, let’s take a closer look at why Elasticsearch is docu-
ment-oriented and how it groups documents in types and indices.

1.2.6 Structuring your data in Elasticsearch

Unlike a relational database, which stores data in records or rows, Elasticsearch stores
data in documents. Yet, to some extent, the two concepts are similar. With rows in a
table, you have columns, and for each column, each row has a value. With a document
you have keys and values, in much the same way.

 The difference is that a document is more flexible than a row, mainly because—in
Elasticsearch, at least—a document can be hierarchical. For example, in the same way
you associate a key with a string value, such as "author":"Joe", a document can have
an array of strings, such as "tags":["cycling", "bicycles"], or even key-value pairs,
such as "author":{"first_name":"Joe", "last_name":"Smith"}. This flexibility is
important because it encourages you to keep all the data that belongs to a logical
entity in the same document, as opposed to keeping it in different rows in different
tables. For example, the easiest (and probably fastest) way of storing blog articles is to
keep all the data that belongs to a post in the same document. This way, searches are
fast because you don’t need joins or any other relational work.

 If you have an SQL background, you might miss the ability to use joins. Unfortu-
nately, they’re not supported, at least in version 1.76 installed. Once that’s in place,
you’re typically only a download away from getting Elasticsearch ready to start.

1.2.7 Installing Java

If you don’t have a Java Runtime Environment (JRE) already, you’ll have to install it
first. Any JRE should work, as long as it’s version 1.7 or later. Typically, you install the
one from Oracle (www.java.com/en/download/index.jsp) or the open-source imple-
mentation, OpenJDK (http://download.java.net/openjdk/).

Troubleshooting “no Java found” errors
With Elasticsearch, as with other Java applications, it might happen that you’ve down-
loaded and installed Java, but the application refuses to start, complaining that it
can’t find Java.

Elasticsearch’s script looks for Java in two places: the JAVA_HOME environment vari-
able and the system path. To check if it’s in JAVA_HOME, use the env command on
UNIX-like systems and the set command on Windows. To check if it’s in the system
path, run the following command: % java -version.

If it works, then Java is in your path. If it doesn’t, either configure JAVA_HOME or add
the Java binary to your path. The Java binary is typically found wherever you installed
Java (which should be JAVA_HOME), in the bin directory.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.java.com/en/download/index.jsp
http://download.java.net/openjdk/

16 CHAPTER 1 Introducing Elasticsearch
1.2.8 Downloading and starting Elasticsearch

With Java set up, you need to get Elasticsearch and start it. Download the package
that best fits your environment. The following package options are available from
www.elastic.co/downloads/elasticsearch: Tar, ZIP, RPM, and DEB.

ANY UNIX-LIKE OPERATING SYSTEM

If you’re running on Linux, Mac, or any other UNIX-like operating system, you can get
Elasticsearch from the tar.gz package. Then you can unpack it and start Elasticsearch
with the shell script from the archive:

% tar zxf elasticsearch-*.tar.gz
% cd elasticsearch-*
% bin/elasticsearch

HOMEBREW PACKAGE MANAGER FOR OS X
If you need an easier way to install Elasticsearch on your Mac, you can install Home-
brew. Instructions for doing that can be found at http://brew.sh. With Homebrew
installed, getting Elasticsearch is a matter of running the following command:

% brew install elasticsearch

Then you start it in a similar way to the tar.gz archive:

% elasticsearch

ZIP PACKAGE

If you’re running on Windows, download the ZIP archive. Unpack it and then run
elasticsearch.bat from the bin/ directory, much as you run Elasticsearch on UNIX:

% bin\elasticsearch.bat

RPM OR DEB PACKAGES

If you’re running on Red Hat Linux, CentOS, SUSE, or anything else that works with
RPMs, or Debian, Ubuntu, or anything else that works with DEBs, there are RPM and
DEB repositories provided by Elastic. You can see how to use them at www.elastic.co/
guide/en/elasticsearch/reference/current/setup-repositories.html.

 Once you get Elasticsearch installed, which basically requires adding the repository
to your list and running an install command, you can start it by running:

% systemctl start elasticsearch.service
Or, if your operating system doesn't have systemd:
% /etc/init.d/elasticsearch start

If you want to see what Elasticsearch is doing, look up the logs in /var/log/elastic-
search/. If you installed it by unpacking the TAR or ZIP archive, you should find them
in the logs/ directory within the unpacked archive.

1.2.9 Verifying that it works

Now that you have Elasticsearch installed and started, let’s take a look at the logs gen-
erated during startup and connect to the REST API for the first time.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.elastic.co/downloads/elasticsearch
http://brew.sh
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-repositories.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-repositories.html

17Exploring typical Elasticsearch use cases
EXAMINING THE STARTUP LOGS

When you first run Elasticsearch, you see a series of log lines telling you what’s going
on. Let’s take a look at some of those lines and what they mean.

 The first line typically provides statistics about the node you started:

[node] [Karkas] version[1.4.0], pid[6011], build[bc94bd8/2014-11-05T14:26:12Z]

By default, Elasticsearch gives your node a random name, in this case Karkas, which
you can modify from the configuration. You can see details on the particular Elastic-
search version you’re running, along with the PID of the Java process that started.

 Plugins are loaded during initialization, and no plugins are included by default:

[plugins] [Karkas] loaded [], sites []

For more information about plugins, see appendix B.
 Port 9300 is used by default for inter-node communication, called transport:

[transport] [Karkas] bound_address {inet[/0.0.0.0:9300]}, publish_address
{inet[/192.168.1.8:9300]}

If you use the native Java API instead of the REST API, this is the point where you need
to connect.

 In the next line, a master node was elected and it’s the node you started named Karkas:

[cluster.service] [Karkas] new_master [Karkas][YPHC_vWiQVuSX-ZIJIlMhg][inet[/
192.168.1.8:9300]], reason: zen-disco-join (elected_as_master)

We discuss master election in chapter 9, which covers scaling out. The basic idea is that
each cluster has a master node, responsible for knowing which nodes are in the cluster
and where all the shards are located. Each time the master is unavailable, a new one is
elected. In this case, you started the first node in the cluster, so this is your master.

 Port 9200 is used for HTTP communication by default. This is where applications
using the REST API connect:

[http] [Karkas] bound_address {inet[/0.0.0.0:9200]}, publish_address {inet[/
192.168.1.8:9200]}

The next line indicates that your node is now started:

[node] [Karkas] started

At this point, you can connect to it and start issuing requests.
 The gateway is the component of Elasticsearch responsible for persisting your data

to disk so you don’t lose it if the node goes down:

[gateway] [Karkas] recovered [0] indices into cluster_state

When you start your node, the gateway looks on the disk to see if any data is saved so it
can restore it. In this case, there’s no index to restore.
Licensed to Thomas Snead <n.ordickan@gmail.com>

18 CHAPTER 1 Introducing Elasticsearch
 Much of the information we’ve looked at in these log lines—from the node name to
the gateway settings—is configurable. We talk about configuration options, and the con-
cepts around them, as the book progresses. You can expect such configuration options
to appear in part 2, which is all about performance and administration. Until then, you
won’t need to configure much because the default values are developer-friendly.

WARNING Default values are so developer-friendly that if you start another
Elasticsearch instance on another computer within the same multicast-
enabled network, it will join the same cluster as the first instance, which might
lead to unexpected results, such as shards migrating from one to the other.
To prevent this, you can change the cluster name in the elasticsearch.yml
configuration file, as shown in chapter 2, section 2.5.1

USING THE REST API
The easiest way to connect to the REST API is by pointing your browser to http://local-
host:9200. If you didn’t install Elasticsearch on your local machine, replace localhost
with the IP address of the remote machine. By default, Elasticsearch listens for incom-
ing HTTP requests on port 9200 of all interfaces. If the request works, you should get a
JSON reply, showing that it works, as shown in figure 1.6.

1.3 Summary
Now that you’re all set up, let’s review what we explored in this chapter:

■ Elasticsearch is an open-source, distributed search engine built on top of
Apache Lucene.

■ The typical use case for Elasticsearch is to index large amounts of data so you
can run full-text searches and real-time statistics on it.

■ Elasticsearch provides features that go well beyond full-text search; for exam-
ple, you can tune the relevance of your searches and offer search suggestions.

■ To get started, download the package, unpack it if necessary, and run the Elas-
ticsearch start script.

Figure 1.6 Checking out
Elasticsearch from your browser
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9200
http://localhost:9200

19Summary
■ For indexing and searching data, as well as for managing your cluster’s settings,
use the JSON over HTTP API and get back a JSON reply.

■ You can also look at Elasticsearch as a NoSQL data store with real-time search
and analytics capabilities. It’s document-oriented and scalable by default.

■ Elasticsearch automatically divides data into shards, which get balanced across
the available servers in your cluster. This makes it easy to add and remove serv-
ers on the fly. Shards are also replicated, making your cluster fault-tolerant.

In chapter 2, you’ll get to know Elasticsearch even better by indexing and searching
real data.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Diving into
the functionality
Now you know what kind of search engine Elasticsearch is, and you’ve seen some of
its main features in chapter 1. Let’s switch to the practical side and see how it does
what it’s good at. Imagine you’re tasked with creating a way to search through mil-
lions of documents, like a website that allows people to build common interest
groups and get together. In this case, documents could be the get-together groups,
individual events. You need to implement this in a fault-tolerant way, and you need
your setup to be able to accommodate more data and more concurrent searches, as
your get-together site becomes more successful.

 In this chapter, we’ll show you how to deal with such a scenario by explaining
how Elasticsearch data is organized. Then you’ll get practical and start indexing

This chapter covers
■ Defining documents, types, and indices
■ Understanding Elasticsearch nodes and

primary and replica shards
■ Indexing documents with cURL and a data set
■ Searching and retrieving data
■ Setting Elasticsearch configuration options
■ Working with multiple nodes
20

Licensed to Thomas Snead <n.ordickan@gmail.com>

21Diving into the functionality
and searching some real data for a get-together website using the code samples pro-
vided for this chapter. We’ll use this get-together example and the code samples
throughout the book to allow you to do some “real” searches and indexing.

 All operations will be done using cURL, a nice little command-line tool for HTTP
requests. Later you can translate what cURL does into your preferred programming
language if you need to. Toward the end of the chapter, you’ll make some configura-
tion changes and start new instances of Elasticsearch, so you can experiment with a
cluster of multiple nodes.

 We’ll get started with data organization. To understand how data is organized in
Elasticsearch, we’ll look at it from two angles:

■ Logical layout—What your search application needs to be aware of.
The unit you’ll use for indexing and searching is a document, and you can
think of it like a row in a relational database. Documents are grouped into
types, which contain documents in a way similar to how tables contain rows.
Finally, one or multiple types live in an index, the biggest container, similar to a
database in the SQL world.

■ Physical layout—How Elasticsearch handles your data in the background.
Elasticsearch divides each index into shards, which can migrate between servers
that make up a cluster. Typically, applications don’t care about this because they
work with Elasticsearch in much the same way, whether it’s one or more servers.
But when you’re administering the cluster, you care because the way you config-
ure the physical layout determines its performance, scalability, and availability.

Figure 2.1 illustrates the two perspectives.

Elasticsearch

Index: get-together

Type: group Type: event

Application’s view: logical layout

Application

Node 1 Node 2 Node 3

get−together

shard 0

primary

get−together

shard 1

replica

get−together

shard 1

primary

get−together

shard 2

replica

get−together

shard 2

primary

get−together

shard 0

replica

Administrator’s view: physical layout

Figure 2.1 An Elasticsearch cluster from the application’s and administrator’s points of view
Licensed to Thomas Snead <n.ordickan@gmail.com>

22 CHAPTER 2 Diving into the functionality
Let’s start with the logical layout—or what the application sees.

2.1 Understanding the logical layout: documents, types,
and indices
When you index a document in Elasticsearch, you put it in a type within an index. You
can see this idea in figure 2.2, where the get-together index contains two types: event
and group. Those types contain documents, such as the one labeled 1. The label 1 is
that document’s ID.

TIP The ID doesn’t have to be an integer. It’s actually a string, and there are
no constraints—you can put there whatever makes sense for your application.

The index-type-ID combination uniquely identifies a document in your Elasticsearch
setup. When you search, you can look for documents in that specific type, of that spe-
cific index, or you can search across multiple types or even multiple indices.

 At this point you might ask: what exactly are a document, a type, and an index?
That’s exactly what we’re going to discuss next.

Elasticsearch

Index: get-together

Type: event

1 2

Type: group

1

Index: get-together-blog

1 432

Type: posts

Indexing application

Search application

Index name +

type name +

document ID =

uniquely identified

document

Index

/get-together/event/2

Search in

/get-together/event

Search in

/get-together/

Search in

/

Index

/get-together/group/1

Index

/get-together-blog/posts/4

Figure 2.2 Logical layout of data in Elasticsearch: how an application sees data
Licensed to Thomas Snead <n.ordickan@gmail.com>

23Understanding the logical layout: documents, types, and indices
2.1.1 Documents

We said in chapter 1 that Elasticsearch is document-oriented, meaning the smallest unit
of data you index or search for is a document. A document has a few important prop-
erties in Elasticsearch:

■ It’s self-contained. A document contains both the fields (name) and their values
(Elasticsearch Denver).

■ It can be hierarchical. Think of this as documents within documents. A value of a
field can be simple, like the value of the location field can be a string. It can also
contain other fields and values. For example, the location field might contain
both a city and a street address within it.

■ It has a flexible structure. Your documents don’t depend on a predefined schema.
For example, not all events need description values, so that field can be omitted
altogether. But it might require new fields, such as the latitude and longitude of
the location.

A document is normally a JSON representation of your data. As we discussed in chap-
ter 1, JSON over HTTP is the most widely used way to communicate with Elasticsearch,
and it’s the method we use throughout the book. For example, an event in your get-
together site can be represented in the following document:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "location": "Denver, Colorado, USA"
}

NOTE Throughout the book, we’ll use different colors for the field names
and values of the JSON documents to make them easier to read. Field names
are darker/blue, and values are in lighter/red.

You can also imagine a table with three columns: name, organizer, and location. The
document would be a row containing the values. But there are some differences that
make this comparison inexact. One difference is that, unlike rows, documents can be
hierarchical. For example, the location can contain a name and a geolocation:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "location": {
 "name": "Denver, Colorado, USA",
 "geolocation": "39.7392, -104.9847"
 }
}

Licensed to Thomas Snead <n.ordickan@gmail.com>

24 CHAPTER 2 Diving into the functionality
A single document can also contain arrays of values; for example:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "members": ["Lee", "Mike"]
}

Documents in Elasticsearch are said to be schema-free, in the sense that not all your doc-
uments need to have the same fields, so they’re not bound to the same schema. For
example, you could omit the location altogether in case the organizer needs to be
called before every gathering:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "members": ["Lee", "Mike"]
}

Although you can add or omit fields at will, the type of each field matters: some are
strings, some are integers, and so on. Because of that, Elasticsearch keeps a mapping
of all your fields and their types and other settings. This mapping is specific to every
type of every index. That’s why types are sometime called mapping types in Elastic-
search terminology

2.1.2 Types

Types are logical containers for documents, similar to how tables are containers for
rows. You’d put documents with different structures (schemas) in different types. For
example, you could have a type that defines get-together groups and another type for
the events when people gather.

 The definition of fields in each type is called a mapping. For example, name would
be mapped as a string, but the geolocation field under location would be mapped
as a special geo_point type. (We explore working with geospatial data in appendix A.)
Each kind of field is handled differently. For example, you search for a word in the
name field and you search for groups by location to find those that are located near
where you live.

TIP Whenever you search in a field that isn’t at the root of your JSON docu-
ment, you must specify its path. For example, the geolocation field under
location is referred to as location.geolocation.

You may ask yourself: if Elasticsearch is schema-free, why does each document belong
to a type, and each type contains a mapping, which is like a schema?

 We say schema-free because documents are not bound to the schema. They aren’t
required to contain all the fields defined in your mapping and may come up with
new fields. How does it work? First, the mapping contains all the fields of all the
Licensed to Thomas Snead <n.ordickan@gmail.com>

25Understanding the physical layout: nodes and shards
documents indexed so far in that type. But not all documents have to have all fields.
Also, if a new document gets indexed with a field that’s not already in the mapping,
Elasticsearch automatically adds that new field to your mapping. To add that field, it
has to decide what type it is, so it guesses it. For example, if the value is 7, it assumes
it’s a long type.

 This autodetection of new fields has its downside because Elasticsearch might not
guess right. For example, after indexing 7, you might want to index hello world,
which will fail because it’s a string and not a long. In production, the safe way to go is
to define your mapping before indexing data. We talk more about defining mappings
in chapter 3.

 Mapping types only divide documents logically. Physically, documents from the
same index are written to disk regardless of the mapping type they belong to.

2.1.3 Indices

Indices are containers for mapping types. An Elasticsearch index is an independent
chunk of documents, much like a database is in the relational world: each index is
stored on the disk in the same set of files; it stores all the fields from all the mapping
types in there, and it has its own settings. For example, each index has a setting called
refresh_interval, which defines the interval at which newly indexed documents are
made available for searches. This refresh operation is quite expensive in terms of per-
formance, and this is why it’s done occasionally—by default, every second—instead of
doing it after each indexed document. If you’ve read that Elasticsearch is near-real-time,
this refresh process is what it refers to.

TIP Just as you can search across types, you can search across indices. This
gives you flexibility in the way you can organize documents. For example, you
can put your get-together events and the blog posts about them in different
indices or in different types of the same index. Some ways are more efficient
than others, depending on your use case. We talk more about how to orga-
nize your data for efficient indexing in chapter 3.

One example of index-specific settings is the number of shards. You saw in chapter 1
that an index can be made up of one or more chunks called shards. This is good for
scalability: you can run Elasticsearch on multiple servers and have shards of the
same index live on all of them. Next, we’ll take a closer look at how sharding works
in Elasticsearch.

2.2 Understanding the physical layout: nodes and shards
Understanding how data is physically laid out boils down to understanding how Elas-
ticsearch scales. Although chapter 9 is dedicated entirely to scaling, in this section,
we’ll introduce you to how scaling works by looking at how multiple nodes work
together in a cluster, how data is divided in shards and replicated, and how indexing
and searching work with multiple shards and replicas.
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Diving into the functionality
To understand the big picture, let’s review what happens when an Elasticsearch index
is created. By default, each index is made up of five primary shards, each with one rep-
lica, for a total of ten shards, as illustrated in figure 2.3.

 As you’ll see next, replicas are good for reliability and search performance. Techni-
cally, a shard is a directory of files where Lucene stores the data for your index. A
shard is also the smallest unit that Elasticsearch moves from node to node.

2.2.1 Creating a cluster of one or more nodes

A node is an instance of Elasticsearch. When you start Elasticsearch on your server, you
have a node. If you start Elasticsearch on another server, it’s another node. You can
even have more nodes on the same server by starting multiple Elasticsearch processes.

 Multiple nodes can join the same cluster. As we’ll discuss later in this chapter, start-
ing nodes with the same cluster name and otherwise default settings is enough to
make a cluster. With a cluster of multiple nodes, the same data can be spread across
multiple servers. This helps performance because Elasticsearch has more resources to
work with. It also helps reliability: if you have at least one replica per shard, any node
can disappear and Elasticsearch will still serve you all the data. For an application
that’s using Elasticsearch, having one or more nodes in a cluster is transparent. By
default, you can connect to any node from the cluster and work with the whole data
just as if you had a single node.

 Although clustering is good for performance and availability, it has its disadvan-
tages: you have to make sure nodes can communicate with each other quickly enough
and that you won’t have a split brain (two parts of the cluster that can’t communicate
and think the other part dropped out). To address such issues, chapter 9 discusses
scaling out.

WHAT HAPPENS WHEN YOU INDEX A DOCUMENT?
By default, when you index a document, it’s first sent to one of the primary shards,
which is chosen based on a hash of the document’s ID. That primary shard may be

1 0

2 3

4

1 2

3

0 4

Elasticsearch cluster

Node 2Node 1

A node is a

process running

Elasticsearch.

A replica

is a copy of a

primary shard.

A primary shard is

a chunk of your index.

Node 3

Figure 2.3 A three-node cluster with an index divided into five shards with one replica per shard
Licensed to Thomas Snead <n.ordickan@gmail.com>

27Understanding the physical layout: nodes and shards
located on a different node, like it is on Node 2 in figure 2.4, but this is transparent to
the application.

 Then the document is sent to be indexed in all of that primary shard’s replicas
(see the left side of figure 2.4). This keeps replicas in sync with data from the primary
shards. Being in sync allows replicas to serve searches and to be automatically pro-
moted to primary shards in case the original primary becomes unavailable.

WHAT HAPPENS WHEN YOU SEARCH AN INDEX?
When you search an index, Elasticsearch has to look in a complete set of shards for
that index (see right side of figure 2.4). Those shards can be either primary or repli-
cas because primary and replica shards typically contain the same documents. Elas-
ticsearch distributes the search load between the primary and replica shards of the
index you’re searching, making replicas useful for both search performance and
fault tolerance.

 Next we’ll look at the details of what primary and replica shards are and how
they’re allocated in an Elasticsearch cluster.

2.2.2 Understanding primary and replica shards

Let’s start with the smallest unit Elasticsearch deals with, a shard. A shard is a Lucene
index: a directory of files containing an inverted index. An inverted index is a structure
that enables Elasticsearch to tell you which document contains a term (a word) with-
out having to look at all the documents.

Indexing

application

Search

application

Index a

document.

Index a

document

in replica.

Search request

Index a

document

to shard 1.

Node 1

Shard 1

replica

Node 2

Shard 0

replica

Shard 1

primary

Shard 0

primary

Figure 2.4 Documents are indexed to random primary shards and their replicas. Searches run on
complete sets of shards, regardless of their status as primaries or replicas.
Licensed to Thomas Snead <n.ordickan@gmail.com>

28 CHAPTER 2 Diving into the functionality
In figure 2.5, you can see what sort of information the first primary shard of your get-
together index may contain. The shard get-together0, as we’ll call it from now on, is a
Lucene index—an inverted index. By default, it stores the original document’s con-
tent plus additional information, such as term dictionary and term frequencies, which
helps searching.

 The term dictionary maps each term to identifiers of documents containing that
term (see figure 2.5). When searching, Elasticsearch doesn’t have to look through all
the documents for that term—it uses this dictionary to quickly identify all the docu-
ments that match.

 Term frequencies give Elasticsearch quick access to the number of appearances of a
term in a document. This is important for calculating the relevancy score of results.
For example, if you search for “denver”, documents that contain “denver” many times
are typically more relevant. Elasticsearch gives them a higher score, and they appear
higher in the list of results. By default, the ranking algorithm is TF-IDF, as we explained

Elasticsearch index vs. Lucene index
You’ll see the word “index” used frequently as we discuss Elasticsearch; here’s how
the terminology works.

An Elasticsearch index is broken down into chunks: shards. A shard is a Lucene
index, so an Elasticsearch index is made up of multiple Lucene indices. This makes
sense because Elasticsearch uses Apache Lucene as its core library to index your
data and search through it.

Throughout this book, whenever you see the word “index” by itself, it refers to an
Elasticsearch index. If we’re digging into the details of what’s in a shard, we’ll spe-
cifically use the term “Lucene index.”

get-together0 shard

A shard is a Lucene index.

Inverted index

elasticsearch

denver

clojure

data

Term

id1

id1,id3

id2,id3

id2

1 occurrence: id1−>1 time

3 occurrences: id1−>1 time, id3−>2 times

5 occurrences: id2−>2 times, id3−>3 times

2 occurrences: id2−>2 times

Document Frequency

Figure 2.5 Term dictionary and frequencies in a Lucene index
Licensed to Thomas Snead <n.ordickan@gmail.com>

29Understanding the physical layout: nodes and shards
in chapter 1, section 1.1.2, but you have a lot more options. We’ll discuss search rele-
vancy in great detail in chapter 6.

 A shard can be either a primary or a replica shard, with replicas being exactly that—
copies of the primary shard. A replica is used for searching or it becomes a new pri-
mary shard if the original primary shard is lost.

 An Elasticsearch index is made up of one or more primary shards and zero or
more replica shards. In Figure 2.6, you can see that the Elasticsearch get-together
index is made up of six total shards: two primary shards (the darker boxes) and two
replicas for each shard (the lighter boxes) for a total of four replicas.

All the shards and replicas you’ve seen so far are distributed to nodes within an Elas-
ticsearch cluster. Next we’ll look at some details about how Elasticsearch distributes
shards and replicas in a cluster having one or more nodes.

Replicas can be added or removed at runtime—primaries can’t
You can change the number of replicas per shard at any time because replicas can
always be created or removed. This doesn’t apply to the number of primary shards
an index is divided into; you have to decide on the number of shards before creating
the index.

Keep in mind that too few shards limit how much you can scale, but too many shards
impact performance. The default setting of five is typically a good start. You’ll learn
more in chapter 9, which is all about scaling. We'll also explain how to add/remove
replica shards dynamically.

Index name: get−together

Number of shards: 2

Number of replicas per shard: 2

Shards for get-together

get−together0

(replica)

get−together0

(replica)

get−together0

(primary)

get−together1

(replica)

get−together1

(replica)

get−together1

(primary)

Figure 2.6 Multiple primary
and replica shards make up the
get-together index.
Licensed to Thomas Snead <n.ordickan@gmail.com>

30 CHAPTER 2 Diving into the functionality
2.2.3 Distributing shards in a cluster

The simplest Elasticsearch cluster has one node: one machine running one Elastic-
search process. When you installed Elasticsearch in chapter 1 and started it, you cre-
ated a one-node cluster.

 As you add more nodes to the same cluster, existing shards get balanced between
all nodes. As a result, both indexing and search requests that work with those shards
benefit from the extra power of your added nodes. Scaling this way (by adding nodes
to a cluster) is called horizontal scaling; you add more nodes, and requests are then dis-
tributed so they all share the work. The alternative to horizontal scaling is to scale ver-
tically; you add more resources to your Elasticsearch node, perhaps by dedicating
more processors to it if it’s a virtual machine, or adding RAM to a physical machine.
Although vertical scaling helps performance almost every time, it’s not always possible
or cost-effective. Using shards enables you to scale horizontally.

 Suppose you want to scale your get-together index, which currently has two pri-
mary shards and no replicas. As shown in figure 2.7, the first option is to scale verti-
cally by upgrading the node: for example, adding more RAM, more CPUs, faster disks,
and so on. The second option is to scale horizontally by adding another node and hav-
ing your data distributed between the two nodes.

 We talk more about performance in chapter 10. For now, let’s see how indexing
and searching work across multiple shards and replicas.

Node 1 (upgraded)

get−together0

get−together1

After scaling vertically

Node 1

get−together0

Node 1

get−together0

Node 2

After scaling horizontallyInitial setup

get−together1

get−together1

Figure 2.7 To improve performance, scale vertically (upper-right) or scale
horizontally (lower-right).
Licensed to Thomas Snead <n.ordickan@gmail.com>

31Understanding the physical layout: nodes and shards
2.2.4 Distributed indexing and searching

At this point you might wonder how indexing and searching work with multiple shards
spread across multiple nodes.

 Let’s take indexing, as shown in figure 2.8. The Elasticsearch node that receives your
indexing request first selects the shard to index the document to. By default, documents
are distributed evenly between shards: for each document, the shard is determined by
hashing its ID string. Each shard has an equal hash range, with equal chances of receiv-
ing the new document. Once the target shard is determined, the current node forwards
the document to the node holding that shard. Subsequently, that indexing operation is
replayed by all the replicas of that shard. The indexing command successfully returns
after all the available replicas finish indexing the document.

With searching, the node that receives the request forwards it to a set of shards con-
taining all your data. Using a round-robin, Elasticsearch selects an available shard
(which can be primary or replica) and forwards the search request to it. As shown in
figure 2.9, Elasticsearch then gathers results from those shards, aggregates them into a
single reply, and forwards the reply back to the client application.

 By default, primary and replica shards get hit by searches in round-robin, assuming
all nodes in your cluster are equally fast (identical hardware and software configura-
tions). If that’s not the case, you can organize your data or configure your shards to
prevent the slower nodes from becoming a bottleneck. We explore such options fur-
ther in chapter 9. For now, let’s start indexing documents in the single-node Elastic-
search cluster that you started in chapter 1.

Indexing

application

Index a

document.

Index a

document

in replica.

Index a

document

to shard 1.

Node 1

get−together1

(replica)

Node 2

get−together0

(replica)

get−together1

(primary)

get−together0

(primary)

Figure 2.8 Indexing operation is
forwarded to the responsible shard
and then to its replicas.
Licensed to Thomas Snead <n.ordickan@gmail.com>

32 CHAPTER 2 Diving into the functionality
2.3 Indexing new data
Although chapter 3 gets into the details of indexing, here the goal is to give you a feel
for what indexing is about. In this section we’ll discuss the following processes:

■ Using cURL, you’ll use the REST API to send a JSON document to be indexed
with Elasticsearch. You’ll also look at the JSON reply that comes back.

■ You’ll see how Elasticsearch automatically creates the index and type to which
your document belongs if they don’t exist already.

■ You’ll index additional documents from the source code for the book so you
have a data set ready to search through.

You’ll index your first document by hand, so let’s start by looking at how to issue an
HTTP PUT request to a URI. A sample URI is shown in figure 2.10 with each part labeled.

 Let’s walk through how you issue the request.

2.3.1 Indexing a document with cURL

For most snippets in this book you’ll use the cURL binary. cURL is a command-line tool
for transferring data over HTTP. You’ll use the curl command to make HTTP requests,
as it has become a convention to use cURL for Elasticsearch code snippets. That’s

Search

application

Search

request

Search

request

Search

request

Search

application

Aggregated

results

Partial

results

Partial

results

Node 1

get−together1

(replica)

Node 2

get−together0

(replica)

get−together1

(primary)

get−together0

(primary)

Step 1: Request is forwarded

Node 1

get−together1

(replica)

Node 2

get−together0

(replica)

get−together1

(primary)

get−together0

(primary)

Step 2: Results are aggregated

Figure 2.9 Search request is forwarded to primary/replica shards containing a complete set of data. Then
results are aggregated and sent back to the client.
Licensed to Thomas Snead <n.ordickan@gmail.com>

33Indexing new data
because it’s easy to translate a cURL example into any programming language. In fact,
if you ask for help on the official mailing list for Elasticsearch, it’s recommended that
you provide a curl recreation of your problem. A curl recreation is a command or a
sequence of curl commands that reproduces the problem you’re experiencing, and
anyone who has Elasticsearch installed locally can run it.

There are many ways to use curl to make HTTP requests; run man curl to see all of
them. Throughout this book, we use the following curl usage conventions:

■ The method, which is typically GET, PUT, or POST, is the argument of the -X
parameter.
You can add a space between the parameter and its argument, but we don’t add
one. For example, we use -XPUT instead of -X PUT. The default method is GET,
and when we use it, we skip the -X parameter altogether.

Installing cURL
If you’re running a UNIX-like operating system, such as Linux or Mac OS X, you’re
likely to have the curl command available. If you don’t have it already or if you’re on
Windows, you can download it from http://curl.haxx.se. You can also install Cygwin
and then select cURL as part of the Cygwin installation, which is the approach we
recommend.

Using Cygwin to run curl commands on Windows is preferred because you can copy-
paste the commands that work on UNIX-like systems. If you choose to stick with the
Windows shell, take extra care because single quotes behave differently on Windows.
In most situations, you must replace single quotes (') with double-quotes (") and
escape double quotes with a backslash (\"). For example, a UNIX command like this

curl 'http://localhost' -d '{"field": "value"}'

looks like this on Windows:

curl "http://localhost" -d "{\"field\": \"value\"}"

Protocol used. HTTP is

supported out-of-the-box.

Hostname of the

Elasticsearch node to connect to.

Use localhost if Elasticsearch

is on the local machine.

Document IDIndex name

http://localhost:9200/get-together/group/1

Port to connect to.

Elasticsearch listens

to 9200 by default. Type name

Figure 2.10 URI of a document in Elasticsearch
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://curl.haxx.se

34 CHAPTER 2 Diving into the functionality
■ In the URI, we skip specifying the protocol; it’s always http, and curl uses http
by default when no protocol is specified.

■ We put single quotes around the URI because it can contain multiple parame-
ters and you have to separate the parameters with an ampersand (&), which nor-
mally sends the process to the background.

■ The data that we send through HTTP is typically JSON, and we surround it with
single quotes because the JSON itself contains double quotes.
If single quotes are needed in the JSON itself, we first close the single quotes
and then surround the needed single quote with double quotes, as shown in
this example:

'{"name": "Scarlet O'"'"'Hara"}'

For consistency, most URLs will be surrounded by single quotes, too (except
when using single quotes prevents escaping a character or including a variable,
when double quotes will be used).

The URLs we use for HTTP requests sometimes contain parameters such as pretty=true
or simply pretty. We use the latter, whether the request is done with curl or not. The
pretty parameter in particular makes the JSON reply look more readable than the
default, which is to return the reply all in one line.

Using Elasticsearch from your browser via Head, kopf, or Marvel
If you prefer graphical interfaces to the command line, several tools are available.

Elasticsearch Head—You can install this tool as an Elasticsearch plugin, a stand-
alone HTTP server, or a web page that you can open from your file system. You can
send HTTP requests from there, but Head is most useful as a monitoring tool to show
you how shards are distributed in your cluster. You can find Elasticsearch Head at
https://github.com/mobz/elasticsearch-head.

Elasticsearch kopf—Similar to Head in that it’s good for both monitoring and sending
requests, this tool runs as a web page from your file system or as an Elasticsearch
plugin. Both Head and kopf evolve quickly, so any comparison might become obso-
lete quickly as well. You can find Elasticsearch kopf at https://github.com/lmenezes/
elasticsearch-kopf.

Marvel—This tool is a monitoring solution for Elasticsearch. We talk more about mon-
itoring in chapter 11, which is all about administering your cluster. Then we’ll describe
monitoring tools like Marvel in appendix D. For now, the thing to remember is that
Marvel also provides a graphical way to send requests to Elasticsearch called Sense,
providing an autocomplete feature, which is a useful learning aid. You can download
Marvel at www.elastic.co/downloads/marvel. Note that Marvel is a commercial prod-
uct, though it's free for development.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/mobz/elasticsearch-head
https://github.com/lmenezes/elasticsearch-kopf
https://github.com/lmenezes/elasticsearch-kopf
https://www.elastic.co/downloads/marvel

35Indexing new data
Assuming you can use the curl command and you have Elasticsearch installed with
the defaults settings on your local machine, you can index your first get-together
group document with the following command:

% curl -XPUT 'localhost:9200/get-together/group/1?pretty' -d '{
 "name": "Elasticsearch Denver",
 "organizer": "Lee"
}'

You should get the following output:

{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "created" : true
}

The reply contains the index, type, and ID of the indexed document. In this case,
you get the ones you specified, but it’s also possible to rely on Elasticsearch to gener-
ate IDs, as you’ll learn in chapter 3. You also get the version of the document, which
begins at 1 and is incremented with each update. You’ll learn about updates in
chapter 3.

 Now that you have your first document indexed, let’s look at what happened with
the index and the type containing this document.

2.3.2 Creating an index and mapping type

If you installed Elasticsearch and ran the curl command to index a document, you
might be wondering why it worked given the following factors:

■ The index wasn’t there before. You didn’t issue any command to create an
index named get-together.

■ The mapping wasn’t previously defined. You didn’t define any mapping type
called group in which to define the fields from your document.

The curl command works because Elasticsearch automatically adds the get-together
index for you and also creates a new mapping for the type group. That mapping con-
tains a definition of your field as strings. Elasticsearch handles all this for you by
default, which enables you to start indexing without any prior configuration. You can
change this default behavior if you need to, as you’ll see in chapter 3.

CREATING AN INDEX MANUALLY

You can always create an index with a PUT request similar to the request used to index
a document:

% curl -XPUT 'localhost:9200/new-index'
{"acknowledged":true}
Licensed to Thomas Snead <n.ordickan@gmail.com>

36 CHAPTER 2 Diving into the functionality
Creating the index itself takes more time than creating a document, so you might
want to have the index ready beforehand. Another reason to create indices in advance
is if you want to specify different settings than the ones Elasticsearch defaults to—for
example, you may want a specific number of shards. We’ll show you how to do these
things in chapter 9—because you’d typically use many indices as a way of scaling out.

GETTING THE MAPPING

As we mentioned, the mapping is automatically created with your new document, and
Elasticsearch automatically detects your name and organizer fields as strings. If you
add a new document with yet another new field, Elasticsearch guesses its type, too,
and appends the new field to the mapping.

 To view the current mapping, issue an HTTP GET to the _mapping endpoint of the
index. This would show you mappings for all types within that index, but you can get a
specific mapping by specifying the type name under the _mapping endpoint:

% curl 'localhost:9200/get-together/_mapping/group?pretty'
{
 "get-together" : {
 "mappings" : {
 "group" : {
 "properties" : {
 "name" : {
 "type" : "string"
 },
 "organizer" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

The response contains the following relevant data:

■ Index name—get-together

■ Type name—group

■ Property list—name and organizer
■ Property options—The type option is string for both properties

We talk more about indices, mappings, and mapping types in chapter 3. For now, let’s
define a mapping and then index some documents by running a script from the code
samples that come with this book.

2.3.3 Indexing documents from the code samples

Before we look at searching through the indexed documents, let’s do some more
indexing by running populate.sh from the code samples. This will give you some
more sample data in order to do searches later on.
Licensed to Thomas Snead <n.ordickan@gmail.com>

37Searching for and retrieving data
The script first deletes the get-together index you created. Then it recreates it and cre-
ates the mapping that’s defined in mapping.json. The mapping file specifies options
other than those you’ve seen so far, and we explore them in the rest of the book,
mostly in chapter 3. Finally, the script indexes documents in two types: group and
event. There is a parent-child relationship between those types (events belonging to
groups), which we explore in chapter 8. For now, ignore this relationship.

 Running the populate.sh script should look similar to the following listing.

% ./populate.sh
WARNING, this script will delete the 'get-together' index and re-index all data!
Press Control-C to cancel this operation.
Press [Enter] to continue.

After running the script, you’ll have a handful of groups that meet and the events
planned for those groups. Let’s look at how you can search through those documents.

2.4 Searching for and retrieving data
As you might imagine, there are many options around how to search. After all, search-
ing is what Elasticsearch is for.

NOTE We look at the most common ways to search in chapter 4; you learn
more about getting relevant results in chapter 6 and about search perfor-
mance in chapter 10.

To take a closer look at the pieces that make up a typical search, search for groups that
contain the word “elasticsearch” but ask only for the name and location fields of the
most relevant document. The following listing shows the GET request and response.

Downloading the code samples
To download the source code, visit https://github.com/dakrone/elasticsearch-in-action,
and then follow the instructions from there. The easiest way to get them is by cloning
the repository:

git clone https://github.com/dakrone/elasticsearch-in-action.git

If you’re on Windows, it’s best to install Cygwin first from https://cygwin.com. During
the installation, add git and curl to the list of packages to be installed. Then you’ll
be able to use git to download the code samples and bash to run them.

Listing 2.1 Indexing documents with populate.sh
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://cygwin.com

38 CHAPTER 2 Diving into the functionality
% curl "localhost:9200/get-together/group/_search?\
q=elasticsearch\
&fields=name,location\
&size=1\
&pretty"

Normally a query runs on a specific field, such as q=name:elasticsearch, but in this
case we didn’t specify any field because we wanted to search in all fields. In fact, Elas-
ticsearch uses, by default, a special field named _all, in which all fields’ contents are
indexed. We’ll look more at the _all field in chapter 3, but for now it’s nice to know
that such a query without an explicit field name goes there.

 We’ll look at many more aspects of searches in chapter 4, but here we’ll take a
closer look at three important pieces of a search:

■ Where to search
■ Contents of the reply
■ What and how to search

2.4.1 Where to search

You can tell Elasticsearch to look in a specific type of a specific index, as in listing 2.2,
but you can also search in multiple types in the same index, in multiple indices, or in
all indices.

 To search in multiple types, use a comma-separated list. For example, to search in
both group and event types, run a command like this:

% curl "localhost:9200/get-together/group,event/_search\
?q=elasticsearch&pretty"

You can also search in all types of an index by sending your request to the _search
endpoint of the index’s URL:

% curl 'localhost:9200/get-together/_search?q=sample&pretty'

Similar to types, to search in multiple indices, separate them with a comma:

% curl "localhost:9200/get-together,other-index/_search\
?q=elasticsearch&pretty"

This particular request will fail unless you created other-index in advance. To ignore
such problems, you can add the ignore_unavailable flag in the same way you add
the pretty flag. To search in all indices, omit the index name altogether:

% curl 'localhost:9200/_search?q=elasticsearch&pretty'

Listing 2.2 Search for “elasticsearch” in groups

URL indicates where to
search: in the group type
of the get-together index.

URI parameters give the details
of the search: find documents
containing “elasticsearch”, but
return only the name and
location fields for the top result.

Flag to print the
JSON reply in a more
readable format
Licensed to Thomas Snead <n.ordickan@gmail.com>

39Searching for and retrieving data
TIP If you need to search in all indices, you can also use a placeholder called
_all as the index name. This comes in handy when you need to search in a
single type across all indices as in this example: http://localhost:9200/_all/
event/_search.

This flexibility regarding where to search allows you to organize data in multiple indices
and types, depending on what makes sense for your use case. For example, log events
are often organized in time-based indices, such as “logs-2013-06-03,” “logs-2013-06-04,”
and so on. Such a design implies that today’s index is hot: all new events go here, and
most of the searches are in recent data. The hot index contains only a fraction of all
your data, making it easier to handle and faster. And you can still search in older data
or in all data if you need to. You’ll find out more about such design patterns in part 2,
where you’ll learn more about scaling, performance, and administration.

2.4.2 Contents of the reply

In addition to the documents that match your search criteria, the reply of a search
contains information that’s useful for checking the performance of your search or the
relevance of the results.

 You might have some questions about listing 2.2 regarding what the reply from
Elasticsearch contains. What’s the score about? What happens if not all shards are
available? Let’s look at each part of the reply shown the following listing.

{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0
 },
 "hits" : {
 "total" : 2,
 "max_score" : 0.9066504,
 "hits" : [{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "3",
 "_score" : 0.9066504,
 "fields" : {
 "location" : ["San Francisco, California, USA"],
 "name" : ["Elasticsearch San Francisco"]
 }
 }]
 }
}

As you can see, the JSON reply from Elasticsearch includes information on time, shards,
hits statistics, and the documents you asked for. We’ll look at each of these in turn.

Listing 2.3 Search reply returning two fields of a single resulting document

How long your request
took and if it timed out

How many shards
were queried

Statistics on all documents
that matched

The results
array
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9200/_all/event/_search
http://localhost:9200/_all/event/_search

40 CHAPTER 2 Diving into the functionality
TIME

The first items of a reply look something like this:

 "took" : 2,
 "timed_out" : false,

The took field tells you how long Elasticsearch needed to process your request. The
time is in milliseconds. The timed_out field indicates whether your search timed out.
By default, searches never time out, but you can specify a limit via the timeout param-
eter. For example, the following search times out after three seconds:

% curl "localhost:9200/get-together/group/_search\
?q=elasticsearch\
&pretty\
&timeout=3s"

If a search times out, the value of timed_out is true, and you get only results that were
gathered until the search timed out.

SHARDS

The next bit of the response is information about shards involved in the search:

"_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0

This might look natural to you because you searched in one index, which in this case
has two shards. All shards replied, so successful is 2, which leaves failed with 0.

 You might wonder what happens when a node goes down and a shard can’t reply
to a search request. Take a look at figure 2.11, which shows a cluster of three nodes,

Node 1

Shard 0

Search

request

Search

in shard 0

Partial

search

response

Node 2

Shard 1

Node 3

(unavailable)

Shard 2

(unassigned)
Partial

search

response

Search response:

Successful shards: 2

Failed shards: 1

Search

application

Search

request

Figure 2.11 Partial results can be returned from shards that are still available.
Licensed to Thomas Snead <n.ordickan@gmail.com>

41Searching for and retrieving data
each with only one shard and no replicas. If one node goes down, some data would be
missing. In this case, Elasticsearch gives you the results from shards that are up and
reports the number of shards unavailable for search in the failed field.

HITS STATISTICS

The last element of the reply is called hits and is quite lengthy because it contains
an array of the matching documents. But before that array, it contains a couple of
statistics:

 "total" : 2,
 "max_score" : 0.9066504

In total, you see the total number of matching documents, and in max_score, you
see the maximum score of those matching documents.

DEFINITION The score of a document returned by a search is the measure of
how relevant that document is for the given search criteria. As mentioned in
chapter 1, by default, the score is calculated with the TF-IDF (term frequency-
inverse document frequency) algorithm. Term frequency means for each term
(word) you search, the document’s score is increased if it has more occur-
rences of that term. Inverse document frequency means the score is increased
more if the term is rare across all documents because it’s considered more
relevant. If the term occurs often in other documents, it’s probably a com-
mon term, and is thus less relevant. We’ll show you how to make your
searches more relevant in chapter 6.

The total number of documents may not match the number of documents you see in
the reply. By default, Elasticsearch limits the number of results to 10, so if you can
have more than 10 results, look at the value of total for the precise number of docu-
ments that match your search criteria. As you saw previously, to change the number of
results returned, use the size parameter.

RESULTING DOCUMENTS

The array of hits is usually the most interesting information in a reply:

"hits" : [{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "3",
 "_score" : 0.9066504,
 "fields" : {
 "location" : ["San Francisco, California, USA"],
 "name" : ["Elasticsearch San Francisco"]
 }
 }]

Each matching document is shown with the index and type it belongs to, its ID, and its
score. The values of the fields you specified in your search query are also shown. In
listing 2.2, you used fields=name,location. If you don’t specify which fields you
want, the _source field is shown. Like _all, _source is a special field, in which, by
Licensed to Thomas Snead <n.ordickan@gmail.com>

42 CHAPTER 2 Diving into the functionality
default, Elasticsearch stores the original JSON document. You can configure what gets
stored in the source, and we explore that in chapter 3.

TIP You can also limit which fields from the original document (_source)
are shown, by using source filtering, as explained here: www.elastic.co/guide/
en/elasticsearch/reference/master/search-request-source-filtering.html. You’d
put these options in the JSON payload of your search, which is explained in
the next section.

2.4.3 How to search

So far, you’ve searched through what’s called a URI request, so named because all your
search options go into the URI. This is good for simple searches you run on the com-
mand line, but it’s safer to think of URI requests as shortcuts.

 Normally, you’d put your query in the data part of your request. Elasticsearch
allows you to specify all the search criteria in JSON format. As searches get more com-
plex, JSON is much easier to read and write and offers a lot more functionality.

 To send a JSON query for all groups that are about Elasticsearch, you could do this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "elasticsearch"
 }
 }
}'

In plain English, this translates to “run a query of type query_string, where the string is
elasticsearch.” It might seem like too much boilerplate to type in elasticsearch, but
this is because JSON provides many more options than a URI request. As you’ll see in
chapter 4, using a JSON query makes sense when you start to combine different types
of queries: squeezing all those options in a URI would be more difficult to handle.
Let’s explore each field.

SETTING QUERY STRING OPTIONS

At the last level of the JSON request, you have "query": "elasticsearch", and you
might think the "query" part is redundant because you already know it’s a query. But
a query_string provides more options than the string itself.

 For example, if you search for “elasticsearch san francisco”, Elasticsearch looks in
the _all field by default. If you wanted to look in the group’s name instead, you’d
specify

"default_field": "name"

Also by default, Elasticsearch returns documents matching any of the specified words
(the default operator is OR). If you wanted to match all the words, you’d specify

"default_operator": "AND"
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/master/search-request-source-filtering.html
http://www.elastic.co/guide/en/elasticsearch/reference/master/search-request-source-filtering.html

43Searching for and retrieving data
The revised query looks like this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "elasticsearch san francisco",
 "default_field": "name",
 "default_operator": "AND"
 }
 }
}'

Another way to achieve the same results is to specify the field and the operator in the
query string itself:

"query": "name:elasticsearch AND name:san AND name:francisco"

The query string is a powerful tool to specify your search criteria. Elasticsearch
parses the string to understand the terms you’re looking for and your other options,
such as fields and operators, and then runs the query. This functionality is inherited
from Lucene1.

CHOOSING THE RIGHT QUERY TYPE

If the query_string query type looks intimidating, the good news is there are many
other types of queries, most of which are covered in chapter 4. For example, if you’re
looking only for the term “elasticsearch” in the name field, a term query would be
faster and more straightforward:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "term": {
 "name": "elasticsearch"
 }
 }
}'

USING FILTERS

So far, all the searches you’ve seen have been queries. Queries give you back
results and each result has a score. If you’re not interested in the score, you can
run a filtered query instead. We’ll talk more about the filtered query in chapter 4, but
the key information is that filters care only whether a result matches the search or
not. As a result, they’re faster and easier to cache than their query counterparts.

1 If you want to find out more about the query string syntax, visit http://lucene.apache.org/core/4_9_0/
queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://lucene.apache.org/core/4_9_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://lucene.apache.org/core/4_9_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

44 CHAPTER 2 Diving into the functionality
For example, the following query looks for the term “elasticsearch” in the name
field of group documents:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "term": {
 "name": "elasticsearch"
 }
 }
 }
 }
}'

The results are the same as the ones you get with the equivalent term query, but filter
results aren’t sorted by score (because the score is 1.0 for all results).

APPLYING AGGREGATIONS

In addition to queries and filters, you can do all sorts of statistics through aggrega-
tions. We look at aggregations in chapter 7, but let’s look at a simple example here.

 Suppose a user is visiting your get-together website and wants to explore the kinds
of groups that are available. You might want to show who the group organizers are.
For example, if “Lee” comes up in the results as the organizer of seven meetings, a
user who knows Lee might click his name to filter only those seven meetings.

 To return people who are group organizers, you can use a terms aggregation. This
shows counters for each term that appears in the field you specify—in this case, orga-
nizer. The aggregation might look like this:

% curl localhost:9200/get-together/group/_search?pretty -d '{
 "aggregations" : {
 "organizers" : {
 "terms" : { "field" : "organizer" }
 }
 }
}'

In plain English, this request translates to “give me an aggregation named organizers,
which is of type terms and is looking at the organizer field.” The following results dis-
play at the bottom of the reply:

"aggregations" : {
 "organizers" : {
 "buckets" : [{
 "key" : "lee",
 "doc_count" : 2
 }, {
 "key" : "andy",
 "doc_count" : 1
….
Licensed to Thomas Snead <n.ordickan@gmail.com>

45Searching for and retrieving data
The results show you that out of the six total terms, “lee” appears two times, “andy”
one time, and so on. We have two groups organized by Lee. You could then search for
the groups for which Lee is the organizer to narrow down your results.

 Aggregations are useful when you can’t search for what you need because you
don’t know what that is. What kinds of groups are available? Are there any events
hosted near where I live? You can use aggregations to drill down in the available data
and see real-time statistics.

 At other times you have the opposite scenario. You know exactly what you need
and you don’t want to run a search at all. That’s when it’s useful to retrieve a docu-
ment by ID.

2.4.4 Getting documents by ID

To retrieve a specific document, you must know the index and type it belongs to and
its ID. You then issue an HTTP GET request to that document’s URI:

% curl 'localhost:9200/get-together/group/1?pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "name": "Denver Clojure",
 "organizer": ["Daniel", "Lee"]
….

The reply contains the index, type, and ID you specified. If the document exists, you’ll
see that the found field is true, in addition to its version and its source. If the docu-
ment doesn’t exist, found is false:

% curl 'localhost:9200/get-together/group/doesnt-exist?pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "doesnt-exist",
 "found" : false
}

As you might expect, getting documents by ID is much faster and less expensive in
terms of resources than searching. It’s also done in real time: as soon as an indexing
operation is finished, the new document can be fetched through this GET API. By con-
trast, searches are near-real time because they need to wait for a refresh, which by
default happens every second.

 Now that you’ve seen how to do all the basic API requests, let’s take a look at how to
change some basic configuration options.
Licensed to Thomas Snead <n.ordickan@gmail.com>

46 CHAPTER 2 Diving into the functionality
2.5 Configuring Elasticsearch
One of Elasticsearch’s strong points is that it has developer-friendly defaults, making it
easy to get started. As you saw in the previous section, you can do indexing and searching
on your own test server without making any configuration changes. Elasticsearch auto-
matically creates an index for you and detects the type of new fields in your documents.

 Elasticsearch also scales easily and efficiently, which is another important feature
when you’re dealing with large amounts of data or requests. In the final section of this
chapter, you’ll start a second Elasticsearch instance, in addition to the one you already
started in chapter 1, and let them form a cluster. This way, you’ll see how Elasticsearch
scales out and distributes your data throughout the cluster.

 Although scaling out can be done without any configuration changes, you’ll tweak
a few knobs in this section to avoid surprises later when you add a second node. You’ll
make the following changes in three different configuration files:

■ Specify a cluster name in elasticsearch.yml—This is the main configuration file
where Elasticsearch-specific options go.

■ Edit logging options in logging.yml—The logging configuration file is for logging
options of log4j, the library that Elasticsearch uses for logging.

■ Adjust memory settings in environment variables or elasticsearch.in.sh—This file is for
configuring the Java virtual machine (JVM) that powers Elasticsearch.

There are a many other options, and we’ll point out a few as they appear, but those listed
are the most commonly used. Let’s walk through each of these configuration changes.

2.5.1 Specifying a cluster name in elasticsearch.yml

The main configuration file of Elasticsearch can be found in the config/ directory of
the unpacked tar.gz or ZIP archive.

TIP The file is in /etc/elasticsearch/ if you installed it from the RPM or DEB
package.

Like the REST API, the configuration can be in JSON or YAML. Unlike the REST API,
the most popular format is YAML. It’s easier to read and use, and all the configuration
samples in this book are based on elasticsearch.yml.

 By default, new nodes discover existing clusters via multicast—by sending a ping to
all hosts listening on a specific multicast address. If a cluster is discovered, the new node
joins it if it has the same cluster name. You’ll customize the cluster name to prevent
instances of the default configuration from joining your cluster. To change the cluster
name, uncomment and change the cluster.name line your elasticsearch.yml:

cluster.name: elasticsearch-in-action

After you update the file, stop Elasticsearch by pressing Control-C and then start it
again with the following command:

bin/elasticsearch
Licensed to Thomas Snead <n.ordickan@gmail.com>

47Configuring Elasticsearch
WARNING If you’ve indexed some data, you might notice that after restarting
Elasticsearch with a new cluster name, there’s no more data. That’s because
the directory in which data is stored contains the cluster name, so you can
come back to your indexed data by changing back the cluster name and
restarting again. For now, you can rerun populate.sh from the code samples
to put the sample data back in.

2.5.2 Specifying verbose logging via logging.yml

When something goes wrong, application logs are the first place to look for clues.
They’re also useful when you just want to see what’s going on. If you need to look in
Elasticsearch’s logs, the default location is the logs/ directory under the path where
you unpacked the zip/tar.gz archive.

TIP If you installed it from the RPM or DEB package, the default path is
/var/log/elasticsearch/.

Elasticsearch log entries are organized in three types of files:

■ Main log (cluster-name.log)—Here you can find general information about what
happens when Elasticsearch is running; for example, whether a query failed or
a new node joined the cluster.

■ Slow-search log (cluster-name_index_search_slowlog.log)—This is where Elasticsearch
logs when a query runs too slow. By default, if a query takes more than half a
second, it logs an entry here.

■ Index-slow log (cluster-name_index_indexing_slowlog.log)—This is similar to the slow-
search log, but by default, it writes an entry if an indexing operation takes more
than half a second.

To change logging options, you edit the logging.yml file, which is located in the same
place as elasticsearch.yml. Elasticsearch uses log4j (http://logging.apache.org/log4j/),
and the configuration options in logging.yml are specific to this logging utility.

 As with other settings, the defaults are sensible, but if, for example, you need more
verbose logging, a good first step is to change the rootLogger, which influences all the
logging. We’ll leave the defaults for now, but if you wanted to make it log everything,
you’d change the first line of logging.yml to this:

rootLogger: TRACE, console, file

By default, the logging level is INFO, which writes all events with a severity level of INFO
or above.

2.5.3 Adjusting JVM settings

As a Java application, Elasticsearch runs in a JVM, which, like a physical machine, has
its own memory. The JVM comes with its own configuration, and the most important
one is how much memory you allow it to use. Choosing the correct memory setting is
important for Elasticsearch’s performance and stability.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://logging.apache.org/log4j/

48 CHAPTER 2 Diving into the functionality
 Most of the memory used by Elasticsearch is called heap. The default setting lets
Elasticsearch allocate 256 MB of your RAM for its heap, initially, and expand it up to 1
GB. If your searches or indexing operations need more than 1 GB of RAM, those oper-
ations will fail and you’ll see out-of-memory errors in your logs. Conversely, if you run
Elasticsearch on an appliance that has only 256 MB of RAM, the default settings might
allocate too much memory.

 To change the default values, you can use ES_HEAP_SIZE environment variable.
You can set it on the command line before starting Elasticsearch.

 On UNIX-like systems, use the export command:

export ES_HEAP_SIZE=500m; bin/elasticsearch

On Windows, use the SET command:

SET ES_HEAP_SIZE=500m & bin\elasticsearch.bat

A more permanent way to set the heap size is by changing bin/elasticsearch.in.sh
(and elasticsearch.bat on Windows). Add ES_HEAP_SIZE=500m at the beginning of the
file, after #!/bin/sh.

TIP If you installed Elasticsearch though the DEB package, change these vari-
ables in /etc/default/elasticsearch. If you installed from the RPM package,
the same settings can be configured in /etc/sysconfig/elasticsearch.

For the scope of this book, the default values should be adequate. If you run more
extensive tests, you may need to allocate more memory. If you’re on a machine with
less than 1 GB of RAM, lowering those values to something like 200m should also work.

Now that you’ve gotten your hands dirty with Elasticsearch configuration options and
you’ve indexed and searched through some data, you’ll get a taste of the “elastic” part
of Elasticsearch: the way it scales. (We cover this topic in depth in chapter 9.) You
could work through all chapters with a single node, but to get an overview of how scal-
ing works, you’ll add more nodes to the same cluster.

2.6 Adding nodes to the cluster
In chapter 1, you unpacked the tar.gz or ZIP archive and started up your first Elastic-
search instance. This created your one-node cluster. Before you add a second node,

How much memory to allocate in production
Start with half of your total RAM as ES_HEAP_SIZE if you run Elasticsearch only on
that server. Try with less if other applications need significant memory. The other half
is used by the operating system for caches, which make for faster access to your
stored data. Beyond that rule of thumb, you’ll have to run some tests while monitor-
ing your cluster to see how much memory Elasticsearch needs. We talk more about
performance tuning and monitoring in part 2 of the book.
Licensed to Thomas Snead <n.ordickan@gmail.com>

49Adding nodes to the cluster
you’ll check the cluster’s status to visualize how data is currently allocated. You can do
that with a graphical tool such as Elasticsearch kopf or Elasticsearch Head, which we
mentioned previously (see section 2.3.1) when you indexed a document. Figure 2.12
shows the cluster in kopf.

 If you don’t have either of these plugins installed, you can always get most of this
information from the Cat Shards API:

% curl 'localhost:9200/_cat/shards?v'
index shard prirep state docs store ip node
get-together 0 p STARTED 12 15.1kb 192.168.1.4 Hammond, Jim
get-together 0 r UNASSIGNED
get-together 1 p STARTED 8 11.4kb 192.168.1.4 Hammond, Jim
get-together 1 r UNASSIGNED

TIP Most Elasticsearch APIs return JSON, but Cat APIs are an exception to
this rule, and the Cat Shards API is one of them. There are many more and
they’re useful to get information about what the cluster is doing at a point in
time in a format that’s easy to parse by both humans and shell scripts. We’ll
talk about Cat APIs more in chapter 11, which is focused on administration.

Either way, you should see the following information:

■ Cluster name, as you defined it previously in elasticsearch.yml.
■ There’s only one node.
■ The get-together index has two primary shards, which are active. The unas-

signed shards represent a set of replicas that were configured for this index.
Because there’s only one node, those replicas remain unallocated.

The unallocated replica shards cause the status to be yellow. This means all the prima-
ries are there, but not all the replicas. If primaries were missing, the cluster would be
red to signal at least one index being incomplete. If all replicas would be allocated,
the cluster would be green to signal that everything works as expected.

Figure 2.12 One-node cluster shown in Elasticsearch kopf
Licensed to Thomas Snead <n.ordickan@gmail.com>

50 CHAPTER 2 Diving into the functionality
2.6.1 Starting a second node

From a different terminal, run bin/elasticsearch or elasticsearch.bat. This starts
another Elasticsearch instance on the same machine. You’d normally start new nodes
on different machines to take advantage of additional processing power, but for now
you’ll run everything locally.

 In the terminal or log file of the new node, you should see a line that begins

[INFO][cluster.service] [Raman] detected_master [Hammond, Jim]

where Hammond, Jim is the name of the first node. What happened was that the second
node detected the first one via multicast and joined the cluster. The first node is also
the master of the cluster, which means it’s responsible for keeping information such as
which nodes are in the cluster and where shards are located. This information is
called cluster state and it’s replicated to other nodes. If the master goes down, another
node can be elected to take its place.

 If you look at your cluster’s status in figure 2.13, you can see that the set of replicas
was allocated to the new node, making the cluster green.

 If these two nodes were on separate machines, you’d have a fault-tolerant cluster,
which would handle more concurrent searches than before. But what if you need
more indexing performance, or need to handle even more concurrent searches?
More nodes will certainly help.

NOTE You may have already noticed that the first node starting on a machine
listens on port 9200 of all interfaces for HTTP requests. As you add more
nodes, it uses port 9201, 9202, and so on. For node-to-node communication,
Elasticsearch uses ports 9300, 9301, and so on. These are ports you might
need to allow in the firewall. You can change listening addresses in the Net-
work and HTTP section of elasticsearch.yml.

Figure 2.13 Replica shards are allocated to the second node.
Licensed to Thomas Snead <n.ordickan@gmail.com>

51Adding nodes to the cluster
2.6.2 Adding additional nodes

If you run bin/elasticsearch or elasticsearch.bat again to add a third node and then a
fourth, you’ll see that they detect the master via multicast and join the cluster in the
same way. Additionally, as shown in figure 2.14, the four shards of the get-together
index automatically get balanced across the cluster.

 At this point you might wonder what happens if you add more nodes. By default,
nothing happens because you have four total shards that can’t be distributed to more
than four nodes. That said, if you need to scale, you have a few options:

■ Change the number of replicas. Replicas can be updated on the fly, but scaling this
way increases only the number of concurrent searches your cluster can serve
because searches are sent to replicas of the same shard in a round-robin fash-
ion. Indexing performance will remain the same, because new data has to be
processed by all shards. Also, isolated searches will only run on a single set of
shards, so adding replicas won’t help.

■ Create an index with more shards. This implies re-indexing your data because the
number of primary shards can’t be changed on the fly.

■ Add more indices. Some data can be easily designed to use more indices. For
example, if you index logs, you can put each day’s logs in its own index.

We discuss these patterns for scaling out in chapter 9. For now, you can shut down the
three extra nodes to keep things simple. You can shut down one node at a time and
watch shards get automatically balanced as you go back to the initial state. If you shut
them down all at once, the first node will remain with one shard, having no time to get
the rest of the data. In that case you can run populate.sh again, which will re-index all
the sample data.

Figure 2.14 Elasticsearch automatically distributes shards across the growing cluster.
Licensed to Thomas Snead <n.ordickan@gmail.com>

52 CHAPTER 2 Diving into the functionality
2.7 Summary
Let’s review what you’ve learned in this chapter:

■ Elasticsearch is document-oriented, scalable, and schema-free by default.
■ Although you can form a cluster with the default settings, you should adjust at

least some of them before you move on; for example, cluster name and heap size.
■ Indexing requests are distributed among the primary shards and replicated to

those primary shards’ replicas.
■ Searches are done using a round-robin approach between complete sets of

data, whether those are made up of shards or replicas. The node that received
the search request then aggregates partial results from individual shards and
returns those results to the application.

■ Client applications may be unaware of the sharded nature of each index or
what the cluster looks like. They care only about indices, types, and document
IDs. They use the REST API to index and search for documents.

■ You can send new documents and search parameters as the JSON payload of an
HTTP request and you’ll get back a JSON reply with the results.

In the next chapter you’ll get the foundation you need to organize your data effec-
tively in Elasticsearch, learn what types of fields your documents can have, and
become familiar with all the relevant options for indexing, updating, and deleting.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Indexing, updating,
and deleting data
This chapter is all about getting data into and out of Elasticsearch and maintaining
it: indexing, updating, and deleting documents. In chapter 1, you learned that Elas-
ticsearch is document-based and that documents are made up of fields and their val-
ues, which makes them self-contained, much like having the column names from a
table contained in the rows. In chapter 2, you saw how you can index such a docu-
ment via Elasticsearch’s REST API. Here, we’ll dive deeper into the indexing process
by looking at the fields in those documents and what they contain. For example,
when you index a document like this

{"name": "Elasticsearch Denver"}

This chapter covers
■ Using mapping types to define multiple types of

documents in the same index
■ Types of fields you can use in mappings
■ Using predefined fields and their options
■ All of the above help with indexing, as well as

updating and deleting data
53

Licensed to Thomas Snead <n.ordickan@gmail.com>

54 CHAPTER 3 Indexing, updating, and deleting data
the name field is a string because its value, Elasticsearch Denver, is a string. Other
fields could be numbers, booleans, and so on. In this chapter we’ll look at three types
of fields:

■ Core—These fields include strings and numbers.
■ Arrays and multi-fields—These fields help you store multiple values of the same

core type in the same field. For example, you can have multiple tag strings in
your tags field.

■ Predefined—Examples of these fields include _ttl (which stands for “time to
live”) and _timestamp.

Think of these field types as metadata that can be automatically managed by Elas-
ticsearch to give you additional functionality. For example, you can configure Elastic-
search to automatically add new data to documents, such as a timestamp, or you can
use the _ttl field to get your documents automatically deleted after a specified
amount of time.

 Once you know the field types that can be in your documents and how to index
them, we’ll look at how you can update documents that are already there. Because of
the way it stores data, when Elasticsearch updates an existing document, it retrieves it
and applies changes according to your specifications. It then indexes the resulting
document again and deletes the old one. Such updates can raise concurrency issues,
and you’ll see how they can be solved automatically with document versions. You’ll
also see various ways of deleting documents, some faster than others. This is again due
to the particular way Apache Lucene, the main library used by Elasticsearch for index-
ing, stores data on disk.

 We’ll start with indexing by looking at how you can manage fields from your docu-
ments. As you saw in chapter 2, fields are defined in mappings, so before we dive into
how you can work with each type of field, we’ll look at how you can work with map-
pings in general.

3.1 Using mappings to define kinds of documents
Each document belongs to a type, which in turn belongs to an index. As a logical divi-
sion of data, you can think of indices as databases and types as tables. For example, the
get-together website that we introduced in chapter 2 uses a different type for groups
and events because those documents have different structures. Note that if you also
had a blog on that website, you might keep blog entries and comments in a separate
index because it’s a completely different set of data.

 Types contain a definition of each field in the mapping. The mapping includes all
the fields that might appear in documents from that type and tells Elasticsearch how
to index the fields in a document. For example, if a field contains a date, you can
define which date format is acceptable.

Licensed to Thomas Snead <n.ordickan@gmail.com>

55Using mappings to define kinds of documents
In figure 3.1 groups and events are stored in different types. The application can then
search in a specific type, such as events. Elasticsearch also allows you to search in mul-
tiple types at once or even in all types of an index by specifying only the index name
when you search.

 Now that you know how mappings are used in Elasticsearch, let’s look at how you
can read the mapping of a type and how you can write one.

Types provide only logical separation
With Elasticsearch, there’s no physical separation of documents that have different
types. All documents within the same Elasticsearch index, regardless of type, end up
in the same set of files belonging to the same shards. In a shard, which is a Lucene
index, the name of the type is a field, and all fields from all mappings come together
as fields in the Lucene index.

The concept of a type is a layer of abstraction specific to Elasticsearch but not
Lucene, which makes it easy for you to have different kinds of documents in the same
index. Elasticsearch takes care of separating those documents; for example, by fil-
tering documents belonging to a certain type when you search in that type only.

This approach creates a problem when the same field name occurs in multiple types.
To avoid unpredictable results, two fields with the same name should have the same
settings; otherwise Elasticsearch might have a hard time figuring out which of the two
fields you’re referring to. In the end, both those fields belong to the same Lucene
index. For example, if you have a name field in both group and event documents, both
should be strings, not one a string and one an integer. This is rarely a problem in real
life, but it’s worth remembering to avoid surprises.

Index: get−together

Type: group

ID: 1

Name: Elasticsearch Denver

Organizer: Lee

Type: event

ID: 1

Name: Hadoop and Elasticsearch

Date: 2013−09−09T18:30

Search application

Search for

“Elasticsearch”

in get−together/

Search for

“Elasticsearch”

in get-together/event

Results:

group:1,

event:1

Results:

event:1

Figure 3.1 Using types to divide data in the same index; searches can run in one, multiple,
or all types.
Licensed to Thomas Snead <n.ordickan@gmail.com>

56 CHAPTER 3 Indexing, updating, and deleting data
3.1.1 Retrieving and defining mappings

When you’re learning Elasticsearch, you often don’t need to worry about the mapping
because Elasticsearch detects your fields automatically and adjusts your mapping
accordingly. You’ll look at how that works in listing 3.1. In a production application,
you often want to define your mapping up front so you don’t have to rely on auto-
matic field detection. We’ll explain how to define a mapping later in this chapter.

GETTING THE CURRENT MAPPING

To see the current mapping of a field type, issue an HTTP GET on _mapping under the
type’s URL:

curl 'localhost:9200/get-together/group/_mapping?pretty'

In the following listing, you first index a new document from your get-together web-
site, specifying a new type called new-events, and Elasticsearch automatically cre-
ates the mapping for you. You then retrieve the created mapping, which shows you
the fields from your document and the field types that Elasticsearch detected for
each field.

curl -XPUT 'localhost:9200/get-together/new-events/1' -d '{
 "name": "Late Night with Elasticsearch",
 "date": "2013-10-25T19:00"
}'
curl 'localhost:9200/get-together/_mapping/new-events?pretty'
reply{ "get-together" : {
 "mappings" : {
 "new-events" : {
 "properties" : {
 "date" : {
 "type" : "date",
 "format" : "dateOptionalTime"
 },
 "name" : {
 "type" : "string"
 }
 }
 }
 }
}}

DEFINING A NEW MAPPING

To define a mapping, you use the same URL as previously, but you issue an HTTP PUT
instead of GET. You need to specify the JSON mapping in the body using the same for-
mat that’s returned when you retrieve a mapping. For example, the following request
puts a mapping that defines the host field as string:

% curl -XPUT 'localhost:9200/get-together/_mapping/new-events' -d '{
 "new-events" : {
 "properties" : {

Listing 3.1 Getting an automatically generated mapping

Indexes a new
document

Gets the
mapping

Detects the two fields
in the document as
well as the type of
each field
Licensed to Thomas Snead <n.ordickan@gmail.com>

57Using mappings to define kinds of documents
 "host": {
 "type" : "string"
 }
 }
 }
}'

You can define a new mapping after you create the index but before inserting any doc-
ument into that type. Why does this PUT work if, as shown in listing 3.1, you already
had a mapping in place? We’ll explain why next.

3.1.2 Extending an existing mapping

When you put a mapping over an existing one, Elasticsearch merges the two. If you
ask Elasticsearch for the mapping now, you should get something like this:

{
 "get-together" : {
 "mappings" : {
 "new-events" : {
 "properties" : {
 "date" : {
 "type" : "date",
 "format" : "dateOptionalTime"
 },
 "host" : {
 "type" : "string"
 },
 "name" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

As you can see, the mapping now contains the two fields from the initial mapping plus
the new field you defined. The initial mapping was extended with the newly added
field, which is something you can do at any point. Elasticsearch calls this a merge
between the existing mapping and the one you provide.

 Unfortunately, not all merges work. For example, you can’t change an existing
field’s data type, and, in general, you can’t change the way a field is indexed. Let’s take
a closer look into why this happens. As shown in the following listing, if you try to
change the host field to a long, it fails with a MergeMappingException.

curl -XPUT 'localhost:9200/get-together/_mapping/new-events' -d '{
 "new-events" : {
 "properties" : {

Listing 3.2 Trying to change an existing field type from string to long fails
Licensed to Thomas Snead <n.ordickan@gmail.com>

58 CHAPTER 3 Indexing, updating, and deleting data
 "host": {
 "type" : "long"
 }
 }
 }
}'
reply{"error":"MergeMappingException[Merge failed with failures {[mapper
[host] of different type, current_type [string], merged_type
[long]]}]","status":400}

The only way around this error is to re-index all the data in new-events, which
involves the following steps:

1 Remove all data from the new-events type; you’ll learn later in this chapter how
to delete data. Removing data also removes the current mapping.

2 Put in the new mapping.
3 Index all the data again.

To understand why re-indexing might be required, imagine you’ve already indexed an
event with a string in the host field. If you want the host field to be long now, Elastic-
search would have to change the way host is indexed in the existing document. As
you’ll explore later in this chapter, editing an existing document implies deleting and
indexing again. To define correct mappings that hopefully will only need additions,
not changes, let’s look at the core types you can choose for your fields in Elasticsearch
and what you can do with them.

3.2 Core types for defining your own fields in documents
With Elasticsearch, a field can be one of the core types (see table 3.1), such as a string
or a number, or it can be a more complex type derived from core types, such as
an array.

 There are some additional types not covered in this chapter. For example, there’s
the nested type, which allows you to have documents within documents, or the geo_point
type, which stores a location on Earth based on its longitude and latitude. We’ll dis-
cuss those additional types in chapter 8, where we cover relationships among docu-
ments, and in appendix A, where we discuss geospatial data.

NOTE In addition to the fields you define in your documents, such as name
or date, Elasticsearch uses a set of predefined fields to enrich them. For exam-
ple, there’s a _all field, where all the document’s fields are indexed together.
This is useful when users search for something without specifying the field—
they can search in all fields. These predefined fields have their own configura-
tion options, and we’ll discuss them later in this chapter.

Let’s look at each of these core types so you can make good mapping choices when
you index your own data.
Licensed to Thomas Snead <n.ordickan@gmail.com>

59Core types for defining your own fields in documents
3.2.1 String

Strings are the most straightforward: your field should be string if you’re indexing
characters. They’re also the most interesting because you have so many options in
your mapping for how to analyze them.

 Analysis is the process of parsing the text to transform it and break it down into ele-
ments to make searches relevant. If it sounds too abstract, don’t worry: chapter 5
explores the concept. But let’s look at the basics now, starting with the document you
indexed in listing 3.1:

% curl -XPUT 'localhost:9200/get-together/new-events/1' -d '{
 "name": "Late Night with Elasticsearch",
 "date": "2013-10-25T19:00"
}'

With this document indexed, search for the word late in the name field, which is a string:

% curl 'localhost:9200/get-together/new-events/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "late"
 }
 }
}'

The search finds the “Late Night with Elasticsearch” document you indexed in list-
ing 3.1. Elasticsearch connects the strings "late" and "Late Night with Elastic-
search" through analysis. As you can see in figure 3.2, when you index "Late Night
with Elasticsearch", the default analyzer lowercases all letters and then breaks the
string into words.

 Analysis produces four terms: late, night, with, and elasticsearch. The same
process is then applied to the query string, but this time, “late” produces the same string:
"late". The document (doc1) matches the search because the late term that resulted
from the query matches the late term that resulted from the document.

DEFINITION A term is a word from the text and is the basic unit for searching.
In different contexts, this word can mean different things: it could be a name,
for example, or it could be an IP address. If you want only exact matches on a
field, the entire field should be treated as a word.

Table 3.1 Elasticsearch core field types

Core type Example values

String "Lee", "Elasticsearch Denver"

Numeric 17, 3.2

Date 2013-03-15T10:02:26.231+01:00

Boolean Value can be either true or false
Licensed to Thomas Snead <n.ordickan@gmail.com>

60 CHAPTER 3 Indexing, updating, and deleting data
On the other hand, if you index “latenight,” the default analyzer creates only one
term: latenight. Searching for “late” won’t hit doc2 because it doesn’t include the
term late.

 This analysis process is where the mapping comes into play. You can specify many
options for analyzing in your mapping. For example, you can configure analysis to
produce terms that are synonyms of your original terms, so queries for synonyms
match as well. We’ll dive into the details of analysis in chapter 5, as promised, but for
now, let’s look at the index option, which can be set to analyzed (the default),
not_analyzed, or no. For example, to set the name field to not_analyzed, your map-
ping might look like this:

% curl -XPUT 'localhost:9200/get-together/_mapping/new-events' -d '{
 "new-events" : {
 "properties" : {
 "name": {
 "type" : "string",
 "index" : "not_analyzed"
 }
 }
 }
}'

By default, index is set to analyzed and produces the behavior you saw previously:
the analyzer lowercases all letters and breaks your string into words. Use this option
when you expect a single matching word to produce a match. For example, if users
search for “elasticsearch,” they expect to see “Late Night with Elasticsearch” in the
list of results.

Index

doc2

Terms for Name:

“latenight”

doc1

Terms for Name:

“late”, “night”, “with”, “elasticsearch”

Indexing process Search process

Analyzer

doc1

Name: Late Night with Elasticsearch

Search for term

“late”

doc2

Name: latenight

Matches:

doc1

Figure 3.2 After the default analyzer breaks strings into terms, subsequent searches match those terms.
Licensed to Thomas Snead <n.ordickan@gmail.com>

61Core types for defining your own fields in documents
 Setting index to not_analyzed does the opposite: the analysis process is skipped,
and the entire string is indexed as one term. Use this option when you want exact
matches, such as when you search for tags. You probably want only “big data” to show
up as a result when you search for “big data,” not “data.” Also, you’ll need this for most
aggregations, which count terms. If you want to get the most frequent tags, you proba-
bly want “big data” to be counted as a single term, not “big” and “data” separately.
We’ll explore aggregations in chapter 7.

 If you set index to no, indexing is skipped and no terms are produced, so you
won’t be able to search on that particular field. When you don’t need to search on a
field, this option saves space and decreases the time it takes to index and search. For
example, you might store reviews for events. Although storing and showing those
reviews is valuable, searching through them might not be. In this case, disable index-
ing for that field, making the indexing process faster and saving space.

Next, let’s look at how you can index numbers. Elasticsearch provides many core types
that can help you deal with numbers, so we’ll refer to them collectively as numeric.

3.2.2 Numeric

Numeric types can be numbers with or without a floating point. If you don’t need dec-
imals, you can choose among byte, short, integer, and long; if you do need them,
your choices are float and double. These types correspond to Java’s primitive data
types, and choosing among them influences the size of your index and the range of
values you can index. For example, whereas a long takes up 64 bits, a short takes up
only 16 bits, but a long can store ranges up to several trillion times larger than the
–32,768 to 32,767 that a short can store.

 If you don’t know the range you need for your integer values or the precision you
need for your floating-point values, it’s safe to do what Elasticsearch does when it
detects your mapping automatically: use long for integer values and double for float-
ing-point values. Your index might become larger and slower because these two types

Check if your query is analyzed when searching in fields that aren’t
For some queries, such as the query_string you used previously, the analysis pro-
cess is applied to your search criteria. It’s important to be aware if this is happening;
otherwise results might not be as expected.

For example, if you index “Elasticsearch” and it’s not analyzed, it produces the term
Elasticsearch. When you query for “Elasticsearch” like this

curl 'localhost:9200/get-together/new-events/_search?q=Elasticsearch'

the URI request is analyzed, and the term elasticsearch (lowercased) is produced.
But you don’t have the term elasticsearch in your index; you only have Elastic-
search (with a capital E), so you get no hits. In chapter 4, where we'll discuss
searches, you’ll learn which query types analyze the input text and which don’t.
Licensed to Thomas Snead <n.ordickan@gmail.com>

62 CHAPTER 3 Indexing, updating, and deleting data
take up the most space, but at least you’re unlikely to get an out-of-range error from
Elasticsearch when indexing.

 Now that we’ve covered strings and numbers, let’s look at a type that’s more purpose-
built: date.

3.2.3 Date

The date type is used for storing dates and times. It works like this: you normally
provide a string with a date, as in 2013-12-25T09:00:00. Then, Elasticsearch parses
the string and stores it as a number of type long in the Lucene index. That long is the
number of milliseconds that have elapsed since 00:00:00 UTC time on January 1, 1970
(UNIX epoch) and the time you provided.

 When you search for documents, you still provide date strings and Elasticsearch
parses those strings and works with numbers in background. It does that because
numbers are faster to store and work with than strings.

 You, on the other hand, only have to consider whether Elasticsearch understands
the date string you’re providing. The date format of your date string is defined by the
format option, and Elasticsearch parses ISO 8601 timestamps by default.

When you use the format option to specify a date format, you have two options:

■ Use a predefined date format. For example, the date format parses dates as 2013-
02-25. Many predefined formats are available, and you can see them all here:
www.elastic.co/guide/reference/mapping/date-format/

■ Specify your own custom format. You can specify a pattern for timestamps to follow.
For example, specifying MMM YYYY parses dates as Jul 2001.

To put all this date information to use, let’s add a new mapping type called weekly-
events, as shown in the next listing. Then, as is also shown in the listing, add a name
and date of the first event and specify an ISO 8601 timestamp for that date. Also add a
field with the date of the next event and specify a custom date format for that date.

ISO 8601
An international standard for exchanging date- and time-related data, ISO 8601 is
widely used in timestamps due to RFC 3339 (www.ietf.org/rfc/rfc3339.txt). An ISO
8601 date looks like this:

2013-10-11T10:32:45.453-03:00

It has all the right ingredients of a good timestamp: information is read from left to
right, from the most important to the least important; the year has four digits; and
the time includes subseconds and the time zone. Much of the information in this
timestamp is optional; for example, you don’t need to specify milliseconds and you
can skip the time altogether.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.ietf.org/rfc/rfc3339.txt
http://www.elastic.co/guide/reference/mapping/date-format/

63Arrays and multi-fields
curl -XPUT 'localhost:9200/get-together/_mapping/weekly-events' -d '
{
 "weekly-events" : {
 "properties": {
 "next_event": {
 "type": "date",
 "format": "MMM DD YYYY"
 }
 }
 }
}'curl -XPUT 'localhost:9200/get-together/weekly-events/1' -d '
{
 "name": "Elasticsearch News",
 "first_occurence": "2011-04-03",
 "next_event": "Oct 25 2013"
}'

We’ve talked about strings, numbers, and dates; let’s move on to the last core type:
boolean. Like date, boolean is a type that’s more purpose-built.

3.2.4 Boolean

The boolean type is used for storing true/false values from your documents. For
example, you might want a field that indicates whether the event’s video is available
for download. A sample document could be indexed like this:

% curl -XPUT 'localhost:9200/get-together/new-events/1' -d '{
 "name": "Broadcasted Elasticsearch News",
 "downloadable": true
}'

The downloadable field is automatically mapped as boolean and is stored in the
Lucene index as T for true or F for false. As with date fields, Elasticsearch parses
the value you supply in the source document and transforms true and false to T
and F, respectively.

 We’ve looked at the core types: string, numeric, date, and boolean, which you
can use in your own fields; let’s move on to arrays and multi-fields, which enable you to
use the same core type multiple times.

3.3 Arrays and multi-fields
Sometimes having simple field-value pairs in your documents isn’t enough. You might
need to have multiple values in the same field. Let’s step away from the get-together
example and look at another use case: you’re indexing blog posts and you want to
have a tag field with one or more tags in it. In this case, you need an array.

Listing 3.3 Using default and custom time formats

Defines the custom date format.
Other dates are automatically
detected and don’t need to be
explicitly defined.

Specifies a standard date/time
format. Only the date is included;
the time isn’t specified.
Licensed to Thomas Snead <n.ordickan@gmail.com>

64 CHAPTER 3 Indexing, updating, and deleting data
3.3.1 Arrays

To index a field with multiple values, put those values in square brackets; for example:

% curl -XPUT 'localhost:9200/blog/posts/1' -d '{
 "tags": ["first", "initial"]
}'

At this point you might wonder, “How do you define an array field in your mapping?”
The answer is you don’t. In this case the mapping defines the tags field as string, as it
does when you have a single value:

% curl 'localhost:9200/blog/_mapping/posts?pretty'
{
 "blog" : {
 "mappings" : {
 "posts" : {
 "properties" : {
 "tags" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

All core types support arrays, and you can use both single values and arrays without
changing your mapping. For example, if the next blog post has only one tag, you can
index it like this:

% curl -XPUT 'localhost:9200/blog/posts/2' -d '{"tags": "second"}'

Internally, it’s pretty much the same thing for Lucene, which has to index more or
fewer terms in that same field, depending on how many values you provide.

3.3.2 Multi-fields

If arrays let you index more data with the same settings, multi-fields are about indexing
the same data multiple times using different settings. For example, in listing 3.4 you
configure the tags field from your posts’ type with two different settings: analyzed, for
matches on every word, and not_analyzed, for exact matches on the full tag name.

TIP You can upgrade a single field to a multi-field configuration without
needing to re-index your data. This is what happens if you’ve already cre-
ated a tags string field before you run the following listing. The opposite
isn’t possible, though: you can’t remove a sub-field from the mapping once
it’s there.
Licensed to Thomas Snead <n.ordickan@gmail.com>

65Using predefined fields
% curl -XPUT 'localhost:9200/blog/_mapping/posts' -d '{
 "posts" : {
 "properties" : {
 "tags" : {
 "type": "string",
 "index": "analyzed",
 "fields": {
 "verbatim": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
 }
}'

You search in the analyzed version of the tags field as you do with any other string. To
search in the not_analyzed version (and get back only exact matches on the original
tag), specify the full path: tags.verbatim.

 Both multi-field and array field types let you have multiple core type values in a
single field. Next, we’ll look at predefined fields (which are normally handled by Elas-
ticsearch on its own) to add new functionality to your documents, such as automati-
cally expiring them.

3.4 Using predefined fields
Elasticsearch provides a number of predefined fields you can use and configure to
add new functionality. These predefined fields are different from the fields you’ve
seen so far in three ways:

■ Typically, you don’t populate a predefined field; Elasticsearch does it. For example, you
can use the _timestamp field to record the date when a document was indexed.

■ They uncover field-specific functionality. For example, the _ttl (time to live) field
enables Elasticsearch to remove documents after a specified amount of time.

■ Predefined field names always begin with an underscore (_). These fields add new
metadata to your documents, and Elasticsearch uses this metadata for various
features, from storing the original document to storing timestamp information
for automatic expiry.

We’ll divide the important predefined fields in the following categories:

■ Control how to store and search your documents. _source lets you store the original
JSON document as you index it. _all indexes all your fields together.

■ Identify your documents. These are special fields containing data about where
your document was indexed: _uid, _id, _type, _index.

Listing 3.4 Multi-field for a string: once analyzed, once not_analyzed

The default tags field is
analyzed, which lowercases
and breaks the provided
text into words.

The second field, tags.verbatim,
is not_analyzed, which makes
the original tag a single term.
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 3 Indexing, updating, and deleting data
■ Add new properties to your documents. You can index the size of the original JSON
with _size1. Similarly, you can index the time it was indexed with _timestamp2

and make Elasticsearch delete it after a specified amount of time with _ttl.3

We won’t cover them here because there are often better ways to achieve the
same goals (for example, it’s cheaper to expire entire indices, as we’ll see in
section 3.6.2) and they might get deprecated in future releases.4

■ Control the shard where your documents are routed to. These are _routing and parent.
We’ll look at _routing in chapter 9, section 9.8, as it’s related to scaling, and at
_parent in chapter 8, where we talk about relationships among documents.

3.4.1 Controlling how to store and search your documents

Let’s start by looking at _source, which lets you store the documents you index, and
_all, which lets you index all their content in a single field.

_SOURCE FOR STORING THE ORIGINAL CONTENTS

The _source field is for storing the original document in the original format. This lets
you see the documents that matched a search, not only their IDs.

 _source can have enabled set to true or false to specify whether or not you want
to store the original document. By default it’s true, and in most cases that’s good
because the existence of _source allows you to use other important features of Elastic-
search. For example, as you’ll learn later in this chapter, updating document contents
using the update API requires _source. Also, the default highlighting implementation
requires _source (see appendix C for more details on highlighting).

WARNING Because a lot of functionality depends on the _source field, and
storing it is relatively cheap in terms of both space and performance, the abil-
ity to disable it might be removed in version 2.0. See the discussion on
GitHub: https://github.com/elastic/elasticsearch/issues/8142. For the same
reasons, we don’t recommend disabling _source.

To see how this field works, let’s look at what Elasticsearch typically returns when you
retrieve a previously indexed document:

% curl 'localhost:9200/get-together/new-events/1?pretty'
[...]
 "_source" : {
 "name": "Broadcasted Elasticsearch News",
 "downloadable": true

You also get the _source JSON back when you search because it’s returned there by
default as well.

1 www.elastic.co/guide/en/elasticsearch/reference/master/mapping-size-field.html
2 www.elastic.co/guide/en/elasticsearch/reference/master/mapping-timestamp-field.html
3 www.elastic.co/guide/en/elasticsearch/reference/master/mapping-ttl-field.html
4 See the discussion here: https://github.com/elastic/elasticsearch/issues/9679.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/master/mapping-size-field.html
http://www.elastic.co/guide/en/elasticsearch/reference/master/mapping-ttl-field.html
https://github.com/elastic/elasticsearch/issues/9679
https://github.com/elastic/elasticsearch/issues/8142
http://www.elastic.co/guide/en/elasticsearch/reference/master/mapping-timestamp-field.html

67Using predefined fields
RETURNING ONLY SOME FIELDS OF THE SOURCE DOCUMENT

When you retrieve or search for a document, you can ask Elasticsearch to return
only specific fields and not the entire _source. One way to do this is to give a comma-
separated list of fields in the fields parameter; for example:

% curl -XGET 'localhost:9200/get-together/group/1?pretty&fields=name'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "fields" : {
 "name" : ["Denver Clojure"]
 }
}

When _source is stored, Elasticsearch gets the required fields from there. You can
also store individual fields by settings the store option to yes. For example, to store
only the name field, your mapping might look like this:

% curl -XPUT 'localhost:9200/get-together/_mapping/events_stored' -d '{
 "events_stored": {
 "properties": {
 "name": {
 "type": "string",
 "store": "yes"
 }
 }
 }
}'

This might be useful when you ask Elasticsearch for a particular field because retriev-
ing a single stored field will be faster than retrieving the entire _source and extracting
that field from it, especially when you have large documents.

NOTE When you store individual fields as well, you should take into account
that the more you store, the bigger your index gets. Usually bigger indices
imply slower indexing and slower searching.

Under the hood, _source is just another stored field in Lucene. Elasticsearch stores
the original JSON in it and extracts fields from it as needed.

_ALL FOR INDEXING EVERYTHING

Just as _source is storing everything, _all is indexing everything. When you search in
_all, Elasticsearch returns a hit regardless of which field matches. This is useful when
users are looking for something without knowing where to look; for example, search-
ing for “elasticsearch” may match the group name “Elasticsearch Denver” as well as
the tag elasticsearch on other groups.

 Running a search from the URI without a field name will search on _all by default:

curl 'localhost:9200/get-together/group/_search?q=elasticsearch'
Licensed to Thomas Snead <n.ordickan@gmail.com>

68 CHAPTER 3 Indexing, updating, and deleting data
If you always search on specific fields, you can disable _all by setting enabled to
false:

"events": {
 "_all": { "enabled": false}

Doing so will reduce the total size of your index and make indexing operations faster.
 By default, each field is included in _all by having include_in_all implicitly set

to true. You can use this option to control what is and isn’t included in _all:

% curl -XPUT 'localhost:9200/get-together/_mapping/custom-all' -d '{
 "custom-all": {
 "properties": {
 "organizer": {
 "type": "string",
 "include_in_all": false
 }
 }
 }
}'

Using include_in_all gives you flexibility not only in terms of saving space but also
regarding how your queries behave. If a search is run without specifying a field,
Elasticsearch will only match contents of fields that were also indexed in _all.

 The next set of predefined fields includes those used to identify documents:
_index, _type, _id, and _uid.

3.4.2 Identifying your documents

To identify a document within the same index, Elasticsearch uses a combination of
the document’s type and ID in the _uid field. The _uid field is made up from the _id
and _type fields that you always get when searching or retrieving documents:

% curl 'localhost:9200/get-together/group/1?fields&pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "found" : true
}

At this point you might wonder, “Why does Elasticsearch store the same data in two
places—you have _id, then _type, and then _uid?”

 Elasticsearch uses _uid internally for identification because all documents land in
the same Lucene indices. The type and ID separation is an abstraction that makes it
easy to work with different structures by dividing them into types. _id is normally
extracted from _uid because of that, but _type has to be indexed separately so it can
easily filter documents by type when you search in a specific type. Table 3.2 shows the
default settings for _uid, _id, and _type.
Licensed to Thomas Snead <n.ordickan@gmail.com>

69Using predefined fields
PROVIDING IDS FOR YOUR DOCUMENTS

So far, you’ve mostly provided IDs manually as part of the URI. For example, to index a
document with ID 1st, you run something like this:

% curl -XPUT 'localhost:9200/get-together/manual_id/1st?pretty' -d '{
 "name": "Elasticsearch Denver"
}'

You could see the ID in the reply:

{
 "_index" : "get-together",
 "_type" : "manual_id",
 "_id" : "1st",
 "_version" : 1,
 "created" : true
}

Alternatively, you can rely on Elasticsearch to generate unique IDs for you. This is use-
ful if you don’t already have a unique ID or you don’t need to identify documents by a
certain property. Typically, this is what you do when you index application logs: they
don’t have a unique property to identify them and they’re never updated.

 To have Elasticsearch generate the ID, use HTTP POST and omit the ID:

% curl -XPOST 'localhost:9200/logs/auto_id/?pretty' -d '{
 "message": "I have an automatic id"
}'

You can see the autogenerated ID in the reply:

{
 "_index" : "logs",
 "_type" : "auto_id",
 "_id" : "RWdYVcU8Rjyy8sJPobVqDQ",
 "_version" : 1,
 "created" : true
}

Table 3.2 Default settings for _id and _type fields

Field name Store value Index value Observations

_uid yes yes Used for identifying a document within the whole
index.

_id no no It’s not indexed and not stored. If you search in it,
_uid is used instead. When you get results, con-
tents are extracted from _uid as well.

_type no not_analyzed It’s indexed and it produces a single term. It's used
by Elasticsearch to filter documents of specific
types. You can search on it, too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

70 CHAPTER 3 Indexing, updating, and deleting data
STORING THE INDEX NAME INSIDE THE DOCUMENT

To have Elasticsearch store the index name in the document, along with the ID and
the type, use the _index field. As with _id and _type, you can see _index in the results
of a search or a GET request, but as with _id and _type, what you see there doesn’t
come from the field contents. _index is disabled by default.

 Elasticsearch knows which index each result came from, so it can show an _index
value there, but by default you can’t search for _index yourself. The following com-
mand shouldn’t find anything:

% curl 'localhost:9200/_search?q=_index:get-together'

To enable _index, set enabled to true. The mapping might look like this:

% curl -XPUT 'localhost:9200/get-together/_mapping/with_index' -d '{
 "with_index": {
 "_index": { "enabled": true }
 }
}'

If you add documents to this type and rerun the previous search, you should find your
new documents.

NOTE Searching for documents belonging to a particular index can be easily
done by using the index URL, as you’ve done so far. But the _index field may
turn out to be useful in more complex use cases. For example, in a multi-
tenant environment, you might have an index for each user. When you search
in multiple indices, you could use the terms aggregation on the _index field
to show the number of documents belonging to each user. We’ll look at
aggregations in chapter 7.

We’ve looked at how your documents are mapped in Elasticsearch so you can index
them in a way that suits your use case. Next, we’ll look at how you can modify docu-
ments that are already indexed.

3.5 Updating existing documents
You may need to change an existing document for various reasons. Suppose you need
to change the organizer for a get-together group. You could index a different docu-
ment to the same address (index, type, and ID), but, as you might expect, you can
update documents by sending the changes you want Elasticsearch to apply. The
update API in Elasticsearch allows you to send the changes you want to apply to a doc-
ument and the API returns a reply indicating whether the operation succeeded or not.
The update process is shown in figure 3.3.

Licensed to Thomas Snead <n.ordickan@gmail.com>

71Updating existing documents
As figure 3.3 illustrates, Elasticsearch does the following (from the top down):

■ Retrieves the existing document—For that to work, you must enable the _source field;
otherwise Elasticsearch doesn’t know what the original document looked like.

■ Applies the changes you specified—For example, if your document was

{"name": "Elasticsearch Denver", "organizer": "Lee"}

and you wanted to change the organizer, the resulting document would be

{"name": "Elasticsearch Denver", "organizer": "Roy"}

■ Removes the old document and indexes the new document (with the update applied) in
its place

In this section, we’ll look at a few ways to use the update API and explore how to man-
age concurrency via Elasticsearch’s versioning feature.

Index:

get-together

Update group 2

Set organizer=Roy

ID: 2

Name: Elasticsearch Denver

Organizer: Lee

Elasticsearch

Application

Update request received;

retrieve the existing document

from the index.

Make requested

changes. Index:

get-together

Elasticsearch

Application
Set

organizer=Roy

Index:

get-together

Group 2 updated

successfully

ID: 2

Name: Elasticsearch Denver

Organizer: Roy

(Remove existing doc with ID 2)

Elasticsearch

Application

Re-index the resulting document

and remove the old one.

Figure 3.3 Updating a document involves retrieving it, processing it, and re-indexing it while overwriting the
previous document.
Licensed to Thomas Snead <n.ordickan@gmail.com>

72 CHAPTER 3 Indexing, updating, and deleting data
3.5.1 Using the update API

Let’s look at how to update documents first. The update API exposes a few ways of
doing that:

■ Send a partial document to add or replace the same part from the existing document. This
is straightforward: you send one or more fields with their values, and after the
update is done, you expect to find them in the document.

■ When sending partial documents or scripts, make sure that the document is created if it
doesn’t exist. You can specify the original contents of a document to be indexed if
one isn’t already there.

■ Send a script to update the document for you. For example, in an online shop, you
might want to increase the number of T-shirts you have in stock by a certain
amount instead of setting it to a fixed number.

SENDING A PARTIAL DOCUMENT

The easiest way to update one or more fields is to send a partial document with the
values you need to set for those fields. To do that, you need to send this info through
an HTTP POST request to the _update endpoint of the document’s URL. The following
command will work after running populate.sh from the code samples:

% curl -XPOST 'localhost:9200/get-together/group/2/_update' -d '{
 "doc": {
 "organizer": "Roy"
 }
}'

This sets the fields you specify under doc to the values you provide, regardless of the
previous values or whether these fields existed or not. If the entire document is miss-
ing, the update operation will fail, complaining that the document is missing.

NOTE When updating, you need to keep in mind that there might be con-
flicts. For example, if you’re changing the group’s organizer to “Roy” and a
colleague changes it to “Radu,” one of those updates will be overridden by the
other one. To control this, you can use versioning, which we’ll cover later in
this chapter.

CREATING DOCUMENTS THAT DON’T EXIST WITH UPSERT

To handle the situation when the updating document doesn’t exist, you can use upsert.
You might be familiar with this term from relational databases; the term is a portman-
teau of update and insert.

 If the document is missing, you can add an initial document to be indexed in the
upsert section of the JSON. The previous command looks like this:

% curl -XPOST 'localhost:9200/get-together/group/2/_update' -d '
{
 "doc": {
 "organizer": "Roy"
 },
Licensed to Thomas Snead <n.ordickan@gmail.com>

73Updating existing documents
 "upsert": {
 "name" : "Elasticsearch Denver",
 "organizer": "Roy"
 }
}'

UPDATING DOCUMENTS WITH A SCRIPT

Finally, let’s look at how to update a document using the values from the existing one.
Suppose you have an online shop, you’re indexing products, and you want to increment
the price of a product by 10. To do that, you use the same API, but instead of provid-
ing a document, you provide a script. A script is typically a piece of code in the JSON
that you send to Elasticsearch, but it can also be an external script.

 We’ll talk more about scripting in chapter 6 because you’ll most likely use scripts to
make your searches more relevant. We’ll also show you how to use scripts in aggrega-
tions in chapter 7 and how to make such scripts run faster in chapter 10. For now, let’s
look at three important elements of an update script:

■ The default scripting language is Groovy. Its syntax is similar to Java, but it’s eas-
ier to use for scripting.

■ Because updating gets the _source of an existing document, changes it, and
then re-indexes the resulting document, your scripts alter fields within _source.
To refer to _source, use ctx._source, and to refer to a specific field, use
ctx._source['field-name'].

■ If you need variables, we recommend you define them separately from the
script itself under params. That’s because scripts need to be compiled, and once
they’re compiled, they get cached. Running the same script multiple times with
different parameters requires the script to be compiled only once. Subsequent
runs take the existing script from cache. This is faster than having different
scripts because they all need compilation.

In listing 3.5, you’ll use a Groovy script to increment the price of an Elasticsearch
shirt by 10.

NOTE Depending on the version of Elasticsearch that you’re on, running
scripts through the API like in listing 3.5 might be forbidden by default for
security reasons. This is called dynamic scripting, and it can be enabled by
setting script.disable_dynamic to false in elasticsearch.yml. Alterna-
tively, you can store scripts on each node’s file system or in the .scripts
index. For more details, take a look at the scripting module documentation:
www.elastic.co/guide/en/elasticsearch/reference/current/modules-script-
ing.html.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html

74 CHAPTER 3 Indexing, updating, and deleting data

e
curl -XPUT 'localhost:9200/online-shop/shirts/1' -d '

{
 "caption": "Learning Elasticsearch",
 "price": 15
}'curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "ctx._source.price += price_diff",
 "params": {
 "price_diff": 10
 }
}'

You can see that ctx._source.price is used instead of the expected ctx._source
['price']. This is an alternative way to refer to the price field. It’s easier to use with
curl because escaping single quotes in shell scripts can be confusing.

 Now that you’ve seen how you can update a document, let’s look at how you can
manage concurrency if multiple updates happen at the same time.

3.5.2 Implementing concurrency control through versioning

If multiple updates are running at the same time, you could encounter concurrency
issues. As illustrated in figure 3.4, it’s possible that one update re-indexes the docu-
ment between the time when the other update got the original document and applied
its own changes. With no concurrency control, the second re-index will cancel the
changes of the first update.

 Fortunately, Elasticsearch supports concurrency control by using a version number
for each document. The initially indexed document is version 1. When you re-index it
through an update, the version number is set to 2. If the version number was set to 2
by another update in the meantime, it’s a conflict and the current update fails (other-
wise it would override the other update like in figure 3.4). You can retry the update
and—if there’s no conflict—version will be set to 3.

 To see how it works, you’ll replicate a process similar to the one shown in figure 3.5
using the code in listing 3.6:

1 Index a document and then update it (update1).
2 Update1 starts in background and includes a waiting time (sleep).
3 During that sleep, issue another update command (update2) that modifies the

document. This change occurs between update1’s fetch of the original docu-
ment and its re-indexing operation.

4 Instead of canceling the changes of update2, update1 fails because the docu-
ment is already at version 2. At this point you have the chance to retry update1
and apply the changes in version 3. (See listing 3.6.)

Listing 3.5 Updating with a script

Script
incrementing th
price field with
the value from
price_diff

Optional params section for
assigning values to variables
used in the script
Licensed to Thomas Snead <n.ordickan@gmail.com>

75Updating existing documents
Now

update1

Set price=2

Get shirt1

shirt1

Caption: Learning ES

Price: 1

Index

shirt1

Caption: Learning ES

Price: 1

update1 retrieves the existing document (shirt1).

Later

update2

Set caption=

Knowing ES

update1

(processing

data)

Get shirt1

shirt1

Caption: Learning ES

Price: 1

Index

shirt1

Caption: Learning ES

Price: 1

While update1 is applying changes, concurrent

update2 is retrieving the document.

Even later

update2

(processing

data)

update1

(finished

processing)

Index shirt1

Caption: Learning ES

Price: 2

shirt1 indexed

successfully

Index

shirt1

Caption: Learning ES

Price: 2

update1 finishes indexing the initial document with its changes.

In the end

shirt1 indexed

successfully

Index shirt1

Caption: Knowing ES

Price: 1

Index

shirt1

Caption: Knowing ES

Price: 1

Without concurrency control, update2 is unaware

of the update1 changes and overrides them.

update2

(finishd

processing)

Figure 3.4 Without concurrency control, changes can get lost.
Licensed to Thomas Snead <n.ordickan@gmail.com>

76 CHAPTER 3 Indexing, updating, and deleting data
Now

update1

Set price=2

Get shirt1

Index

Later

update2

Set caption=

Knowing ES

update1

(sleeping)

In the end

update2

(finished

processing)

Index shirt1

Caption: Knowing ES

Price: 15

(Increment version 1)

shirt1 indexed

successfully

Even later

Error! Version

is already 2!

Index shirt1

Caption: Learning ES

Price: 2

(Increment version 1)

Get shirt1

shirt1

Caption: Learning ES

Price: 15

Version: 1

shirt1

Caption: Learning ES

Price: 15

Version: 1

update1

(sleeping)

update1

(finished

processing)

Index

shirt1

Caption: Learning ES

Price: 15

Version: 1

shirt1

Caption: Knowing ES

Price: 15

Version: 2

shirt1

Caption: Learning ES

Price: 15

Version: 1

Index

shirt1

Caption: Knowing ES

Price: 15

Version: 2

Index

Figure 3.5 Concurrency control through versioning prevents one update from overriding another.
Licensed to Thomas Snead <n.ordickan@gmail.com>

77Updating existing documents

s

).
% curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "Thread.sleep(10000); ctx._source.price = 2"
}' &
% curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "ctx._source.caption = \"Knowing Elasticsearch\""
}'

Figure 3.5 is a graphical representation of what happens in this listing.
 This kind of concurrency control is called optimistic because it allows parallel oper-

ations and assumes that conflicts appear rarely, throwing errors when they do appear.
This is opposed to pessimistic locking, in which conflicts are prevented in the first place
by blocking operations that might cause conflicts.

AUTOMATICALLY RETRYING AN UPDATE WHEN THERE’S A CONFLICT

When a version conflict appears, you can deal with it in your own application. If it’s an
update, you can try applying it again. But you can also make Elasticsearch reapply it
for you automatically by setting the retry_on_conflict parameter:

% SHIRTS="localhost:9200/online-shop/shirts"
% curl -XPOST "$SHIRTS/1/_update?retry_on_conflict=3" -d '{
 "script": "ctx._source.price = 2"
}'

USING VERSIONS WHEN YOU INDEX DOCUMENTS

Another way to update a document without using the update API is to index a new one
to the same index, type, and ID. This overwrites the existing document and you can still
use the version field for concurrency control. To do that, set the version parameter in
the HTTP request. The value should be the version you expect the document to have.
For example, if you expect version 3 to be already there, a re-index can look like this:

% curl -XPUT 'localhost:9200/online-shop/shirts/1?version=3' -d '{
 "caption": "I Know about Elasticsearch Versioning",
 "price": 5
}'

The operation will fail with the version conflict exception you saw in listing 3.6 if the
current version is different than 3.

 With versions, you can index or update your documents safely. Next, let’s look at
how you can remove documents.

Listing 3.6 Two concurrent updates managed with versioning: one fails

Update1 wait
10 seconds
and goes to
background (&

If update2 runs within 10 seconds,
it forces update1 to fail because it

increments the version number.
Licensed to Thomas Snead <n.ordickan@gmail.com>

78 CHAPTER 3 Indexing, updating, and deleting data
3.6 Deleting data
Now that you know how to send data to Elasticsearch, let’s look at what options you
have for removing some of what was indexed. If you’ve worked through the listings
throughout this chapter, you now have unnecessary data that’s waiting to be removed.
We’ll look at a few ways to remove data—or at least get it out of the way of slowing
down your searches or further indexing:

■ Delete individual documents or groups of documents. When you do that, Elasticsearch
only marks them to be deleted, so they don’t show up in searches, and gets
them out of the index later in an asynchronous manner.

■ Delete complete indices. This is a particular case of deleting groups of docu-
ments. But it differs in the sense that it’s easy to do performance-wise. The
main job is to remove all the files associated with that index, which happens
almost instantly.

■ Close indices. Although this isn’t about removing, it’s worth mentioning here. A
closed index doesn’t allow read or write operations and its data isn’t loaded in
memory. It’s similar to removing data from Elasticsearch, but it remains on disk,
and it’s easy to restore: you open the closed index.

3.6.1 Deleting documents

There are a few ways to remove individual documents, and we’ll discuss most of
them here:

■ Remove a single document by its ID. This is good if you have only one document to
delete, provided that you know its ID.

■ Remove multiple documents in a single request. If you have multiple individual docu-
ments that you want to delete, you can remove them all at once in a bulk

Using external versioning
So far you’ve used Elasticsearch’s internal versioning, which makes Elasticsearch
automatically increment the version number with each operation, whether that’s an
index or an update. If the source of your data is another data store, maybe you have
a versioning system there; for example, one based on timestamps. In that case you
might want to keep versions in sync as well as the documents.

To rely on external versioning, you need to add version_type=external to every
request in addition to the version number:

DOC_URL="localhost:9200/online-shop/shirts/1"
curl -XPUT "$DOC_URL?version=101&version_type=external" -d '{
 "caption": "This time we use external versioning",
 "price": 100
}'

This will make Elasticsearch accept any version number, as long as it’s higher than
the current version, and it doesn’t increment the version number on its own.
Licensed to Thomas Snead <n.ordickan@gmail.com>

79Deleting data
request, which is faster than removing one document at a time. We’ll cover bulk
deletes in chapter 10, along with bulk indexing and bulk updating.

■ Remove a mapping type, with all the documents in it. This effectively searches and
removes all the documents you’ve indexed in that type, plus the mapping itself.

■ Remove all the documents matching a query. This is similar to removing a mapping
type, in the sense that internally a search is run to identify the documents that
need to be deleted, only here you can specify any query you want and the
matching documents will be deleted.

REMOVING A SINGLE DOCUMENT

To remove a single document, you need to send an HTTP DELETE request to its URL;
for example:

% curl -XDELETE 'localhost:9200/online-shop/shirts/1'

You can also use versioning to manage concurrency with deletes, just as you did while
indexing and updating. For example, let’s assume you sold all shirts of a certain type,
and you want to remove that document so it doesn’t appear in searches at all. But you
might not know at that time if a new shipment arrived and the stock data has been
updated. To accomplish this, add a version parameter to your DELETE request, as you
did with index and update requests before.

 There’s one particularity to deletes when it comes to versioning, though. Once you
delete the document, it’s no longer there, so it’s easy for an update to come and recre-
ate it, even if shouldn’t (for example, because that update’s version is lower than the
delete version). This is especially a problem if you’re using external versioning
because any external version will work on a document that doesn’t exist.

 To prevent this problem, Elasticsearch keeps the version of that document around
for a while so it can reject updates with a lower version than that of the delete. That
time is 60s by default, which should be enough for most use cases, but you can change
it by setting index.gc_deletes in elasticsearch.yml or in each index’s settings. We’ll
talk more about managing index settings in chapter 11, which is about administration.

REMOVING A MAPPING TYPE AND DOCUMENTS MATCHING A QUERY

You can also remove an entire mapping type, which removes the mapping itself plus
all the documents indexed in that type. To do that, you provide the type’s URL to the
DELETE request:

% curl -XDELETE 'localhost:9200/online-shop/shirts

The tricky part about removing types is that the type name is just another field in the
documents. All documents of an index end up in the same shards regardless of the
mapping type they belong to. When you issue the previous command, Elasticsearch
has to query for documents of that type and then remove them. This is an important
detail when it comes to performance for removing types versus removing complete
indices because removing types typically takes longer and uses more resources.
Licensed to Thomas Snead <n.ordickan@gmail.com>

80 CHAPTER 3 Indexing, updating, and deleting data
 In the same way that you can query for all documents within a type and delete
them, Elasticsearch allows you to specify your own query for documents you want to
delete through an API called delete by query. Using the API is similar to running a query,
except that the HTTP request is DELETE and the _search endpoint is now _query. For
example, to remove all documents that match “Elasticsearch” from the index get-
together, you can run this command:

% curl -XDELETE 'localhost:9200/get-together/_query?q=elasticsearch'

Similar to regular queries, which we cover in more detail in chapter 4, you can run a
delete by query on a specific type, on multiple types, everywhere in an index, in multi-
ple indices, or in all indices. When you search in all indices, be careful when you run a
delete by query.

TIP Besides being careful, you can use backups. We talk about backups in
chapter 11, which is all about administration.

3.6.2 Deleting indices

As you might expect, to delete an index, you issue a DELETE request to the URL of
that index:

% curl -XDELETE 'localhost:9200/get-together/'

You can also delete multiple indices by providing a comma-separated list or even
delete all indices by providing _all as the index name.

TIP Does deleting all documents via curl -DELETE localhost:9200/_all
sound dangerous to you? You can prevent that by setting action.destructive
_requires_name: true in elasticsearch.yml. That will make Elasticsearch reject
_all, as well as wildcards in index names, when it comes to deletes.

Deleting an index is fast because it’s mostly about removing the files associated with all
shards of that index. Deleting files on the file system happens quickly compared to
when you delete individual documents. When you do that, they’re only marked as
deleted. They get removed when segments are merged. Merging is the process of com-
bining multiple small Lucene segments into a bigger segment.

On segments and merging
A segment is a chunk of the Lucene index (or a shard, in Elasticsearch terminology)
that is created when you’re indexing. Segments are never appended—only new ones
are created as you index new documents. Data is never removed from them because
deleting only marks documents as deleted. Finally, data never changes because
updating documents implies re-indexing.

When Elasticsearch is performing a query on a shard, Lucene has to query all its seg-
ments, merge the results, and send them back—much like the process of querying
Licensed to Thomas Snead <n.ordickan@gmail.com>

81Deleting data
3.6.3 Closing indices

Instead of deleting indices, you also have the option of closing them. If you close an
index, you won’t be able to read or write data from it with Elasticsearch until you open
it again. This is useful when you have flowing data, such as application logs. You’ll
learn in chapter 9 that it’s a good idea to store such flowing data in time-based indi-
ces—for example, creating one index per day.

 In an ideal world, you’d hold application logs forever in case you needed to look
back a long time previously. On the other hand, having a large amount of data in Elas-
ticsearch demands increased resources. For this use case, it makes sense to close old
indices. You’re unlikely to need that data, but you don’t want to remove it, either.

 To close the online-shop index, send an HTTP POST request to its URL at the
_close endpoint:

% curl -XPOST 'localhost:9200/online-shop/_close'

To open it again, you run a similar command, only the endpoint becomes _open:

% curl -XPOST 'localhost:9200/online-shop/_open'

Once you close an index, the only trace of it in Elasticsearch’s memory is its metadata,
such as name and where shards are located. If you have enough disk space and you’re
not sure whether you’ll need to search in that data again, closing indices is better than
removing them. Closing them gives you the peace of mind that you can always reopen
a closed index and search in it again.

3.6.4 Re-indexing sample documents

In chapter 2, you used the book’s code samples to index documents. Running popu-
late.sh from these code samples removes the get-together index you created in this
chapter and re-indexes the sample documents. If you look at both the populate.sh
script and the mapping definition from mapping.json, you’ll recognize various types
of fields we discussed in this chapter.

multiple shards within an index. As with shards, the more segments you have to go
though, the slower the search.

As you may imagine, normal indexing operations create many such small segments.
To avoid having an extremely large number of segments in an index, Lucene merges
them from time to time.

Merging some documents implies reading their contents, excluding the deleted doc-
uments, and creating new and bigger segments with their combined content. This pro-
cess requires resources—specifically, CPU and disk I/O. Fortunately, merges run
asynchronously, and Elasticsearch lets you configure numerous options around
them. We’ll talk more about those options in chapter 12, where you’ll learn how to
improve the performance of index, update, and delete operations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

82 CHAPTER 3 Indexing, updating, and deleting data
 Some of the mapping and indexing options, such as the analysis settings, are dealt
with in upcoming chapters. For now, run populate.sh to prepare the get-together
index for chapter 4, where we’ll explore searches. The code samples provide you with
sample data to search on.

3.7 Summary
Before moving on, let’s have another look at what we’ve discussed in this chapter:

■ Mappings let you define fields in your documents and how those fields are
indexed. We say Elasticsearch is schema-free because mappings are extended
automatically, but in production you often need to take control over what’s
indexed, what’s stored, and how it’s stored.

■ Most fields in your documents are core types, such as strings and numbers. The
way you index those fields has a big impact on how Elasticsearch performs and
how relevant your search results are—for example, the analysis settings, which
we cover in chapter 5.

■ A single field can also be a container for multiple fields or values. We looked at
arrays and multi-fields, which let you have multiple occurrences of the same
core type in the same field.

■ Besides the fields that are specific to your documents, Elasticsearch provides
predefined fields, such as _source and _all. Configuring these fields changes
some data that you don’t explicitly provide in your documents but has a big
impact on both performance and functionality. For example, you can decide
which fields need to be indexed in _all as well.

■ Because Elasticsearch stores data in Lucene segments that don’t change once
they’re created, updating a document implies retrieving the existing one, put-
ting the changes in a new document that gets indexed, and marking the old
one as deleted.

■ The removal of documents happens when the Lucene segments are asynchro-
nously merged. This is also why deleting an entire index is faster than removing
one or more individual documents from it—it only implies removing files on
disk with no merging.

■ Throughout indexing, updating, and deleting, you can use document versions
to manage concurrency issues. With updates, you can tell Elasticsearch to retry
automatically if an update fails because of a concurrency issue.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Searching your data
Now that we’ve explored how you get data into Elasticsearch, let’s cover how you
get data out of Elasticsearch: by searching. After all, what good is indexing your
data into a search engine if you can’t search through it? Fortunately, Elasticsearch
provides a rich API for searching through data, running the gamut of Lucene’s
search capability. Because of the format Elasticsearch allows for constructing search
requests, there are limitless possibilities for how they can be built. The best way to
tell which query in combination with filter(s) to use for your data is to experiment,
so don’t be afraid to try out these combinations on your project’s data to figure out
which one best suits your needs.

This chapter covers
■ The structure of an Elasticsearch search

request and response
■ Elasticsearch filters and how they differ

from queries
■ Filter bitsets and caching
■ Using queries and filters that Elasticsearch

supports
83

Licensed to Thomas Snead <n.ordickan@gmail.com>

84 CHAPTER 4 Searching your data
To start off, we discuss the components common to all search requests and results so
you’ll have an understanding of what a search request and the result of that search
request look like in general. We then move on to discussing the query and filter DSL
as one of the main elements of the search API. Next, we discuss the differences
between queries and filters, followed by a look at some of the most commonly used
filters and queries. If you’re wondering about the details of how Elasticsearch calcu-
lates the score for documents, don’t worry; we discuss that in chapter 6, where we
talk about searching with relevancy. Finally, we provide a quick-and-dirty guide to
help you choose which type of query and filter combination to use for a particular
application. Make sure to check it out if there seem to be too many types of queries
and filters to keep straight!

 Before we start, let’s revisit what happens when you perform a search in Elastic-
search (see figure 4.1). The REST API search request is first sent to the node you
choose to connect to, which in turn sends the search request to all shards (either
primary or replica) for the index or indices being queried. When enough informa-
tion has been collected from all shards to sort and rank the results, only the shards
containing the document content that will be returned are asked to return the rele-
vant content.

 This search routing behavior is configurable; the default behavior is shown in fig-
ure 4.1 and is called “query_then_fetch.” We’ll look at how to change it later on in
chapter 10. For now, let’s look at the basic structure that all Elasticsearch search
requests share.

4.1 Structure of a search request
Elasticsearch search requests are JSON document-based requests or URL-based requests.
The requests are sent to the server, and because all search requests follow the same
format, it’s helpful to understand the components that you can change for each
search request. Before we discuss the different components, we have to talk about the
scope of your search request.

Searchable data
In this chapter, you’ll again use the dataset formed around the get-together website
we’ve touched on in previous examples. This dataset contains two different types of
documents: groups and events. To follow along and perform the queries yourself,
download and run the populate.sh script to populate an Elasticsearch index. The
samples are created with a fresh run of the script; if you want to tag along, please
run the script again.

To download the script, see the source code for the book at https://github.com/
dakrone/elasticsearch-in-action.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

85Structure of a search request

s
nt

-
r
4.1.1 Specifying a search scope

All REST search requests use the _search REST endpoint and can be either a GET
request or a POST request. You can search an entire cluster or you can limit the scope
by specifying the names of indices or types in the request URL. The following listing
provides example search URLs that limit the scope of searches.

% curl 'localhost:9200/_search' -d '...'
% curl 'localhost:9200/get-together/_search' -d '...'
% curl 'localhost:9200/get-together/event/_search' -d '...'
% curl 'localhost:9200/_all/event/_search' -d '...'
% curl 'localhost:9200/*/event/_search' -d '...'
% curl 'localhost:9200/get-together,other/event,group/_search' -d '...'
% curl 'localhost:9200/+get-toge*,-get-together/_search' -d '...'

Listing 4.1 Limiting the search scope in the URL

Search

application

Search

request

Search

request

Search

request

Search

application

Aggregated

results

Partial

results

Partial

results

Node 1

get−together1

(replica)

Node 2

get−together0

(replica)

get−together1

(primary)

get−together0

(primary)

Step 1: Request is forwarded.

Node 1

get−together1

(replica)

Node 2

get−together0

(replica)

get−together1

(primary)

get−together0

(primary)

Step 2: Results are aggregated.

Figure 4.1 How a search request is routed; the index consists of two shards and one replica per shard. After
locating and scoring the documents, only the top 10 documents are fetched.

Searches
the entire
cluster

Searches the
get-together
index Searche

the eve
type in
the get
togethe
index

Searches all event
types in all indices

Searches the event and
group types in the get-
together and other indices

Searches all indices that
start with get-toge but not

the get-together index
Licensed to Thomas Snead <n.ordickan@gmail.com>

86 CHAPTER 4 Searching your data
Next to indexes you can also use aliases to search through multiple indexes. This
method is used often to search through all available time-stamped indices. Think
about indices in the format logstash-yyyymmdd, with one alias called logstash that
points to all indices. You can also do a basic search and limit it to all logstash-based
indices: curl 'localhost:9200/logstash/_search'. For the best performance, limit
your queries to the smallest number of indices and types possible because anything
Elasticsearch doesn’t have to search means faster responses. Remember that each
search request has to be sent to all shards of an index; the more indices you have to
send search requests to, the more shards are involved.

 Now that you know how to limit the scope for your search request, the next step is
to discuss the basic components of the search request.

4.1.2 Basic components of a search request

Once you’ve selected the indices to search, you need to configure the most important
components of the search request. These components deal with the amount of docu-
ments to return, select the best documents to return, and configure which documents
you don’t want in your results:

■ query—The most important component for your search request, this part con-
figures the best documents to return based on a score, as well as the documents
you don’t want to return. This component is configured using the query DSL
and the filter DSL. An example is to search for all events with the word “elastic-
search” in the title limited to events in this year.

■ size—Represents the amount of documents to return.
■ from—Together with size, from is used to do pagination. Be careful, though; in

order to determine the second page of 10 items, Elasticsearch has to calculate
the top 20 items. If your result set grows, getting a page somewhere in the mid-
dle would be expensive.

■ _source—Specifies how the _source field is returned. The default is to return
the complete _source field. By configuring _source, you filter the fields that
are returned. Use this if your indexed documents are big and you don’t need
the full content in your result. Be aware that you shouldn’t disable the _source
field in your index mappings if you want to use this. See the note for the differ-
ence between using fields and _source.

■ sort—The default sorting is based on the score for a document. If you don’t
care about the score or you expect a lot of documents with the same score, add-
ing a sort helps you to control which documents get returned.

NOTE Before version 1 of Elasticsearch, field was the component to use for fil-
tering the fields to return. This is still possible; the behavior is to return stored
fields if available. If no stored field is available, the field is obtained from
the source. If you don’t explicitly store fields in the index, it’s better to use the
_source component. Using _source filtering, Elasticsearch doesn’t have to
check for a stored field first before obtaining the field from the _source.
Licensed to Thomas Snead <n.ordickan@gmail.com>

87Structure of a search request
RESULTS START AND PAGE SIZE

The aptly named from and size fields are sent to specify the offset to start results from
and the size of each “page” of results. For example, if you send a from value of 7 and a
size of 5, Elasticsearch will send the 8th, 9th, 10th, 11th, and 12th results back
(because the from parameter starts at 0, specifying 7 starts at the 8th result). If these
two parameters aren’t sent, Elasticsearch defaults to starting at the first result (the
“0th”), and sends 10 results with the response. There are two distinct ways of sending a
search request to Elasticsearch.

 In the next section we discuss sending a URL-based search request; after that we
discuss the request body–based search requests. The discussed basic components of
the search request will be used in both mechanisms.

URL-BASED SEARCH REQUEST

In this section you’ll create a URL-based search request using the four basic compo-
nents discussed in the previous section. The URL-based search is meant to be useful
for quick curl-based requests. Not all search features are exposed using the URL-based
search. In the following listing, the search request will search for all events, but you
want the second page of 10 items.

% curl 'localhost:9200/get-together/_search?from=10&size=10'

In listing 4.3, you create the search request to return the default first 10 events of all
events, but ordered by their date in ascending order. If you want to, you can combine
both search request configurations as well. Also try the same search request in descend-
ing (desc) order and check if the order of the events is changed, as shown in the
next listing.

% curl 'localhost:9200/get-together/_search?sort=date:asc'

In listing 4.4 you limit the fields from sources that you want in the response. Imagine
you only want to have the title of the event together with the date of the event. Again,
you want the events ordered by date. You configure the _source component to ask for
the title and date only. More options for the _source are explained in the next section
when we discuss the request body–based search. The response in the listing shows one
of the hits.

Listing 4.2 Paginating results using from and size

Listing 4.3 Changing the order of the results

Request matching all documents with from
and size sent as parameters in the URL

Request matching all documents but returning the default
first 10 of all results ordered by date in ascending order
Licensed to Thomas Snead <n.ordickan@gmail.com>

88 CHAPTER 4 Searching your data

ts
 of
 in
ly

tle
te.
% curl 'localhost:9200/get-together/_search?sort=date:asc&_source=title,date'
{
 _"index": "get-together",
 _"type": "event",
 _"id": "114",
 _"score": null,
 _"source": {
 "date": "2013-09-09T18:30",
 "title": "Using Hadoop with Elasticsearch"
 },
 "sort": [
 1378751400000
]
},

So far you’ve only created search requests using the match_all query. The query and
filter DSL is discussed in section 4.2, but we do think it’s important to show how you
can create a URL-based search request where you want to return only documents con-
taining the word “elasticsearch” in the title, as in the next listing. Again you sort by
date. Notice the q=title:elasticsearch part. This is where you specify that you want
to query on the field title for the word “elasticsearch.”

% curl 'localhost:9200/get-together/
_search?sort=date:asc&q=title:elasticsearch'

With q= you indicate you want to provide a query in the search request. With
title:elasticsearch you specify that you’re looking for the word “elasticsearch” in
the title field.

 We leave it up to you to try out the query and check that the response contains
only events with the word “elasticsearch” in the title. Feel free to play around with
other words and fields. Again, you can combine the mentioned components of the
search API in one query.

 Now that you’re comfortable with search requests using the URL, you’re ready to
move on to the request body–based search requests.

4.1.3 Request body–based search request

In the previous section we demonstrated how to use the basic search request compo-
nents in URL-based queries. This is a nice way of interacting with Elasticsearch if
you’re on the command line, for instance. When executing more advanced searches,
using request body–based searches gives you more flexibility and more options. Even
when using request body–based searches, some of the components can be provided

Listing 4.4 Limiting the fields from source that you want in the response

Listing 4.5 Changing the order of the results

Request matching all documen
but return the default first 10

all results ordered by date
ascending order. You want on
two fields in the response: ti

and da

Show one hit of
the response.

The score is null;
you’re using a sort and
therefore no score is
calculated.

The filtered _source
document now contains

only filtered fields.

Request matching all events
with the word “elasticsearch”
in their title
Licensed to Thomas Snead <n.ordickan@gmail.com>

89Structure of a search request
in the URL as well. We focus in this section on the request body because we already
discussed all URL-based configurations in the previous section. The example in the
following listing searches for the second page of the get-together index when all docu-
ments are matched.

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match_all": {}
 },
 "from": 10,
 "size": 10
}'

Other than noticing the "query" section, which is an object in every query, don’t
worry about the "match_all" section yet. We talk about it in section 4.2 when discuss-
ing the query and filter DSL.

FIELDS RETURNED WITH RESULTS

The next element that all search requests share is the list of fields Elasticsearch
should return for each matching document. This is specified by sending the _source
component with the search request. If no _source is specified with the request, Elas-
ticsearch returns either the entire _source of the document by default, or, if the
_source isn’t stored, only the metadata about the matching document: _id, _type,
_index, and _score.

 The previous query is used in the following listing, returning the name and date
fields of each matching group.

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match_all": {}
 },
 "_source": ["name", "date"]
}'

WILDCARDS IN RETURNED FIELDS WITH _SOURCE

Not only can you return a list of fields, you can also specify wildcards. For example, if
you wanted to return both a "name" and "nation" field, you could specify _source:
"na*". You can also specify multiple wildcards using an array of wildcard strings, like
_source: ["name.*", "address.*"].

 Not only can you specify which fields to include, you can also specify which fields
you don’t want to return. The next listing gives an example.

Listing 4.6 Paginating results using from and size

Listing 4.7 Filtering the returned _source

Returns results
starting from
the 10th result Returns a total of

max 10 results

Returns the name and
date fields with the
search response
Licensed to Thomas Snead <n.ordickan@gmail.com>

90 CHAPTER 4 Searching your data
% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match_all": {}
 },
 "_source": {
 "include": ["location.*", "date"],
 "exclude": ["location.geolocation"]
 }
}'

SORT ORDER FOR RESULTS

The last element most searches include is the sort order for the results. If no sort
order is specified, Elasticsearch returns matching documents sorted by the _score
value in descending order, with the most relevant (highest scoring) documents first.
To sort fields in either ascending or descending order, specify an array of maps
instead of an array of fields. You can sort on any number of fields by specifying a list of
fields or field maps in the sort value. For example, using the previous organizer
search, you can return results sorted first by creation date, starting with the oldest;
then by the name of the get-together group, in reverse alphabetical order; and finally
by the _score of the result, as shown in the following listing.

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match_all": {}
 },
 "sort": [
 {"created_on": "asc"},
 {"name": "desc"},
 "_score"
]
}'

SORTING ON MULTIVALUED AND ANALYZED FIELDS When sorting on multivalued
fields (tags, for instance), you don’t know how the sorting uses the values. It
will pick one to sort on, but you can’t know which one. The same is true for
analyzed fields. An analyzed field will regularly result in multiple terms as
well. Therefore it’s best to sort on not-analyzed or numeric fields.

THE BASIC COMPONENTS IN ACTION

Now that we’ve covered the basic search components, the next listing shows an exam-
ple of a search request that uses them all.

Listing 4.8 Filtering the returned _source showing include and exclude

Listing 4.9 Results sorted by date (ascending), name (descending), and _score

Return fields starting with
location and date fields
with the search response.

Don’t return the field
location.geolocation.

Sorts first by the creation
date, starting from the
oldest to newest

Then sorts by name of
the group, in reverse
alphabetical order

Finally, sorts by the relevancy
of the result (its _score)
Licensed to Thomas Snead <n.ordickan@gmail.com>

91Structure of a search request

Num
millis

the

c
hits

c
h

T

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "match_all": {}
 },
 "from": 0,
 "size": 10,
 "_source": ["name", "organizer", "description"],
 "sort": [{"created_on": "desc"}]
}'

Before we go into more details on the query and filter API, we have to cover one other
item: the structure of the search response.

4.1.4 Understanding the structure of a response

Let’s look at an example search and see what the response looks like. The next listing
searches for groups about “elasticsearch.” For brevity we used the URL-based search.

% curl 'localhost:9200/_search?q=title:elasticsearch&_source=title,date'
{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "hits": {
 "total": 7,
 "max_score": 0.9904146,
 "hits": [
 {
 "_index": "get-together",
 "_type": "event",
 "_id": "103",
 "_score": 0.9904146,
 "_source": {
 "date": "2013-04-17T19:00",
 "title": "Introduction to Elasticsearch"
 }
 },
 {
 "_index": "get-together",
 "_type": "event",
 "_id": "105",
 "_score": 0.9904146,
 "_source": {

Listing 4.10 Query with all four elements: scope, pagination, fields, and sort order

Listing 4.11 Example search request and response

Starts from
the first (0th)
result

Returns a total
of 10 results

Includes name of
group, organizer,
and description
of group

Sorts by the created_on
field, descending

ber of
econds
 query

took

Indication if one of the shards had a
timeout, indicating partial results

Number of shards that responded to this
request successfully or unsuccessfullyResponse

ontains a
 key that
ontains a
its array.

Total number of matching
results for the search

Maximum score of all
documents for this search

he hits array
within the

hits keyword
element

Index of the
result document

Elasticsearch
type of the result
document

ID of the result
document

Relevancy score
for this result

The _source
fields that were
requested (title
and date in this

example)
Licensed to Thomas Snead <n.ordickan@gmail.com>

92 CHAPTER 4 Searching your data
 "date": "2013-07-17T18:30",
 "title": "Elasticsearch and Logstash"
 }
 },
 …
]
 }
}

Remember that if you don’t store either the _source of the document or the fields,
you won’t be able to retrieve the value from Elasticsearch!

 Now that you’re familiar with the basic components of a search request, there’s
one component that we haven’t really discussed yet: the query and filter DSL. This was
done on purpose, because the topic is so big it deserves its own section.

4.2 Introducing the query and filter DSL
In the previous section we discussed the basic components of a search request. We
talked about the amount of items to return and support pagination using from and
size. We also discussed sorting and filtering the fields of the source to return. In this
section we explain the basic component we didn’t discuss at length yet, the query com-
ponent. So far you’ve used a basic query component, the match_all query. Check the
following listing to see it in action.

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match_all": {}
 }
}'

In this section you’re replacing the match_all query with a match query, and you’re
going to add a term filter from the filter DSL to the search request using the filtered
query of the query DSL. After that we dive into what makes filters different from que-
ries. Next, we take a look at some other basic queries and filters. We wrap up the sec-
tion with compound queries and other more advanced queries and filters. Then,
before moving to analyzers, we help you choose the right query for the job.

4.2.1 Match query and term filter

So far almost every search request that you did returned all documents. In this section
we show two ways to limit the number of documents to return. We start with a match
query to find groups containing the word “Hadoop” in the title. The following code
listing shows this search request.

Listing 4.12 Basic search request using request body

Placeholder for other
hits left out for brevity

The query component
in the search APIBasic example of

the query API
Licensed to Thomas Snead <n.ordickan@gmail.com>

93Introducing the query and filter DSL
% curl 'localhost:9200/get-together/event/_search' -d '{
 "query": {
 "match": {
 "title": "hadoop"
 }
 }
}'

The query returns three events in total. The structure of the response was explained
previously in section 4.1.4. If you’re following along, look at the score for the first
match. The first match is the document with the title “Using Hadoop with Elastic-
search.” The score for this document is 1.3958796. You can change the search by
searching for the word “Hadoop” with the capital H. The result will be the same. Try it
if you don’t believe us.

 Now imagine you have a website that groups events by host, so you get this nice
list of aggregates and a count of the number of events per host. After clicking on the
events hosted by Andy, you want to find all events hosted by Andy. You can create a
search request with a match query looking for Andy in the host field. If you create
this search request and execute it, you’ll see there are three events hosted by Andy,
all having the same score. We hear you ask, “Why?” Read in chapter 6 about how scor-
ing works. This is the right moment to introduce filters.

 Filters are similar to the queries we discuss in this chapter, but they differ in how
they affect the scoring and performance of many search actions. Rather than comput-
ing the score for a particular term as queries do, a filter on a search returns a simple
binary “does this document match this query” yes-or-no answer. Figure 4.2 shows the
main difference between queries and filters.

Listing 4.13 match query

match query showing how
to search for events with
“hadoop” in the titleNotice that you look for

the word “Hadoop”
with a lowercase h.

Document has

tags=lucene?

No Yes No Yes

Term filter:

tags=lucene

Cache mismatch:

skip document

Cache match:

return document

Document has

tags=lucene?

Term query:

tags=lucene

Never mind; move on

to the next document.
Calculate score

Return document

Figure 4.2 Filters require less processing and are cacheable because they don’t calculate the score.
Licensed to Thomas Snead <n.ordickan@gmail.com>

94 CHAPTER 4 Searching your data
Because of this difference, filters can be faster than using a regular query, and they
can also be cacheable. A search using a filter looks similar to a regular search using a
query, but the query is replaced with a "filtered" map that contains the original
query and a filter to be applied, as shown in the next listing. This query is called the
filtered query in the query DSL. A filtered query contains two components: the query
and the filter.

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match": {
 "title": "hadoop"
 }
 },
 "filter": {
 "term": {
 "host": "andy"
 }
 }
 }
 }
}'

Here a regular query for events matching “hadoop” is used as the query, but in addi-
tion to the query for the word “Hadoop,” a filter is used to limit the events. Inside this
particular filter section, a term filter is applied for all documents that have the host
"andy". Behind the scenes, Elasticsearch constructs a bitset, which is a binary set of bits
denoting whether the document matches this filter. Figure 4.3 shows what this bitset
looks like.

 After constructing the bitset, Elasticsearch can now use it to filter (hence the
name!) out the documents that it shouldn’t be searching based on the query part of
the search. The filter limits the amount of documents for which a score needs to be
calculated. The score for the limited set of documents is calculated based on the
query. Because of this, adding a filter can be much faster than combining the entire
query into a single search. Depending on what kind of filter is used, Elasticsearch can
cache the results in a bitset. If the filter is used for another search, the bitset doesn’t
have to be calculated again!

 Other types of filters aren’t automatically cached if Elasticsearch can tell they’ll
never be used again or if the bitsets are trivial to recreate. An example of a query
that’s hard to cache is a filter that limits the results to all documents of the last hour.
This query changes every second when you execute it and therefore there’s no rea-
son to cache it. Check listing 4.17 to see an example. Additionally, Elasticsearch
gives you the ability to manually specify whether a filter should be cached, as well as

Listing 4.14 Query using a filter

Query type, here specifying a
query with a filter attached

The query searches for events
with “hadoop” in the title.

The additional filter limits the
query to events that are hosted
by andy. Notice the lowercase a
in andy. This is explained in the
next chapter about analysis.
Licensed to Thomas Snead <n.ordickan@gmail.com>

95Introducing the query and filter DSL
the ability to manually specify whether a filter should be cached. All of this trans-
lates into faster searches with filters. Therefore, you should make parts of your
query into filters if you can.

 We’ll revisit bitsets to explain the details of how they work and how they affect per-
formance in chapter 10, which discusses ways to speed up searches. Now that you
understand what filters are, we’ll cover several different types of filters and queries,
and you’ll run some searches against data.

4.2.2 Most used basic queries and filters

Although there are a number of ways to query for things in Elasticsearch, some may
be better than others depending on how the data is stored in your index. In this sec-
tion, you learn the different types of queries Elasticsearch supports and try out an
example of how to use each query. We assess the pros and cons of using each query
and provide performance notes about each one so you can determine which query best
fits your data.

 In the previous sections of this chapter, a number of queries and filters were
already introduced. You started with the match_all query to return all documents,
moved on to the match query to limit results of an occurring word in a field, and used
the term filter to limit the results using a term in a field. One query that we didn’t dis-
cuss but that you did use is the query_string query. This query was used in the URL-
based search. More on this later in this section.

Filter: {"term": {"tags": "lucene"}}

A hadoop

B lucene

C lucene

D python

E java

“tags” field inside

documents A–E

A

0

B

1

C

1

D

0

E

0

Document

Bitset

A bitset is a binary flag

indicating whether the

filter matches. Documents B and C match.

Figure 4.3 Filter results
are cached in bitsets,
making subsequent runs
much faster.
Licensed to Thomas Snead <n.ordickan@gmail.com>

96 CHAPTER 4 Searching your data
 In this section we recap these queries but now introduce some more advanced
options. We also look at more advanced queries and filters like the range filter, the
prefix query, and the simple_query_string query. Let’s start with the easiest que-
ries, beginning with the match_all query.

MATCH_ALL QUERY

We’ll give you a guess as to what this query does. That’s correct! It matches all docu-
ments. The match_all query is useful when you want to use a filter instead of a
query (perhaps if you don’t care about the score of documents at all) or you want to
return all documents among the indices and types you’re searching. The query looks
like this:

% curl 'localhost:9200/_search' -d '
{
 "query" : {
 "match_all" : {}
 }
}'

To use a filter for a search instead of any regular query parts, the query looks some-
thing like this (with the filters omitted):

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 ... filter details ...
 }
 }
 }
}'

Simple, huh? Not too useful, though, for a search engine, because users rarely search
for everything. You can even make this search request easier; using the match_all
query is the default. Therefore the query elements can be left out completely in this
case. Next, let’s look at a query that’s a bit more useful.

QUERY_STRING QUERY

In chapter 2, you used the query_string query to see how easy it is to get an Elastic-
search server up and running, but we’ll cover it again in more detail so you can see
how it compares to the other queries.

 As shown in the following listing, a query_string search can be performed either
from the URL of the request or sent in a request body. In this example, you search for
documents that contain “nosql.” The query should return one document.

Licensed to Thomas Snead <n.ordickan@gmail.com>

97Introducing the query and filter DSL

tring
nt

r

% curl -XGET 'localhost:9200/get–together/_search?q=nosql&pretty'

% curl -XPOST 'http://localhost:9200/get–together/_search?pretty' –d '
{
 "query" : {
 "query_string" : {
 "query" : "nosql"
 }
 }
}'

By default, a query_string query searches the _all field, which, if you recall from
chapter 3, is made up of all the fields combined. You can change this by either specify-
ing a field with the query, such as description:nosql, or by specifying a default_field
with the request, as shown in the next listing.

% curl -XPOST 'localhost:9200/_search' –d '
{
 "query" : {
 "query_string" : {
 "default_field" : "description",
 "query" : "nosql"
 }
 }
}'

As you may have guessed, this syntax offers more than searching for a single word.
Under the hood, this is the entire Lucene query syntax, which allows combining
searching different terms with Boolean operators like AND and OR, as well as exclud-
ing documents from the results using the minus sign (-) operator. The following
query searches for all groups with “nosql” in the name but without “mongodb” in
the description:

name:nosql AND -description:mongodb

To search for all search and Lucene groups created between 1999 and 2001, you could
use the following:

(tags:search OR tags:lucene) AND created_on:[1999-01-01 TO 2001-01-01]

NOTE Refer to www.lucenetutorial.com/lucene-query-syntax.html for a full
example of syntax the query_string query supports.

Listing 4.15 Example query_string search

Listing 4.16 Specifying a default_field for a query_string search

A query_s
search se
as a URL
paramete

The same query_string search
sent as the body of a request

Because no field is specified
in the query, the default field
(description) is used.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.lucenetutorial.com/lucene-query-syntax.html

98 CHAPTER 4 Searching your data
One big disadvantage with the query_string query is that it has great power. Giving
your website users this power might put your Elasticsearch cluster at risk. If users start
entering queries with the wrong format, they’ll get back exceptions; it’s also possible
to make combinations that would return the world and that way put your cluster at
risk. See the previous note for an example.

 Suggested replacements for the query_string query include the term, terms,
match, or multi_match queries, all of which allow you to search for strings within a
field or fields in a document. Another good replacement is the simple-query-string
query; this is meant to be a replacement with easy access to a query syntax using +, -,
AND, OR. More on these queries in the sections that follow.

TERM QUERY AND TERM FILTER

term queries and filters are some of the simplest queries that can be performed, allow-
ing you to specify a field and term to search for within your documents. Note that
because the term being searched for isn’t analyzed, it must match a term in the docu-
ment exactly for the result to be found. We’ll cover how exactly tokens, which are indi-
vidual pieces of text indexed by Elasticsearch, get analyzed in chapter 5. If you’re
familiar with Lucene, it might be helpful to know that the term query maps directly to
Lucene’s TermQuery.

 The following listing shows a term query that searches for groups with the elas-
ticsearch tag.

% curl 'localhost:9200/get-together/group/_search' –d '
{
 "query": {
 "term": {
 "tags": "elasticsearch"
 }
 },
 "_source": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "3",

Query_string cautions
Although the query_string query is one of the most powerful queries available to you
in Elasticsearch, it can sometimes be one of the hardest to read and extend. It may be
tempting to allow your users the ability to specify their own queries with this syntax, but
consider the difficulty in explaining the meaning of complex queries such as this:

name:search^2 AND (tags:lucene OR tags:"big data"~2) AND -
description:analytics AND created_on:[2006-05-01 TO 2007-03-29]

Listing 4.17 Example term query
Licensed to Thomas Snead <n.ordickan@gmail.com>

99Introducing the query and filter DSL
 "_index": "get-together",
 "_score": 1.0769258,
 "_type": "group",
 "_source": {
 "name": "Elasticsearch San Francisco",
 "tags": [
 "elasticsearch",
 "big data",
 "lucene",
 "open source"
]
 }
 },
 {
 "_id": "2",
 "_index": "get-together",
 "_score": 0.8948604,
 "_type": "group",
 "_source": {
 "name": "Elasticsearch Denver",
 "tags": [
 "denver",
 "elasticsearch",
 "big data",
 "lucene",
 "solr"
]
 }
 }
],
 ...
}

Like the term query, a term filter can be used when you want to limit the results to
documents that contain the term but without affecting the score. Compare the scores
of the documents in the previous listing with the scores in the following listing: you’ll
notice that the filter doesn’t bother calculating and therefore influencing the score;
due to the match_all query, the score for all documents is 1.0.

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "term": {
 "tags": "elasticsearch"
 }
 }
 }

Listing 4.18 Example term filter

Because these two
results contain the
word “elasticsearch”
in the tags, they’re
returned.

The same query as
before but using a
filter this time
Licensed to Thomas Snead <n.ordickan@gmail.com>

100 CHAPTER 4 Searching your data
 },
 "_source": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "3",
 "_index": "get-together",
 "_score": 1.0,
 "_type": "group",
 "_source": {
 "name": "Elasticsearch San Francisco",
 "tags": [
 "elasticsearch",
 "big data",
 "lucene",
 "open source"
]
 }
 },
 {
 "_id": "2",
 "_index": "get-together",
 "_score": 1.0,
 "_type": "group",
 "_source": {
 "name": "Elasticsearch Denver",
 "tags": [
 "denver",
 "elasticsearch",
 "big data",
 "lucene",
 "solr"
]
 }
 }
]
 ...
}

TERMS QUERY

Similar to the term query, the terms query (note the s!) can search for multiple terms
in a document’s field. For example, the following listing searches for groups by a tag
matching either “jvm” or “hadoop.”

% curl 'localhost:9200/get-together/group/_search' –d '
{
 "query": {
 "terms": {
 "tags": ["jvm", "hadoop"]
 }

Listing 4.19 Searching for multiple terms with the terms query

The document
scores are now
constant because
a filter was used
instead of a query.

Multiple terms
to search for
Licensed to Thomas Snead <n.ordickan@gmail.com>

101Introducing the query and filter DSL
 },
 "_source": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "1",
 "_index": "get-together",
 "_score": 0.33779633,
 "_type": "group",
 "_source": {
 "name": "Denver Clojure",
 "tags": [
 "clojure",
 "denver",
 "functional programming",
 "jvm",
 "java"
]
 }
 },
 {
 "_id": "4",
 "_index": "get-together",
 "_score": 0.22838624,
 "_type": "group",
 "_source": {
 "name": "Boulder/Denver big data get-together",
 "tags": [
 "big data",
 "data visualization",
 "open source",
 "cloud computing",
 "hadoop"
]
 }
 }
 ...
}

To force a minimum number of matching terms to be in a document before it matches
the query, specify the minimum_should_match parameter:

% curl 'localhost:9200/get-together/group/_search' -d '
{
 "query": {
 "terms": {
 "tags": ["jvm", "hadoop", "lucene"],
 "minimum_should_match": 2
 }
 }
}'

Found
one of the
matching
tags
Licensed to Thomas Snead <n.ordickan@gmail.com>

102 CHAPTER 4 Searching your data
If you’re thinking, “Wait! That’s pretty limited!” you’re probably also wondering what
happens when you need to combine multiple queries into a single query. More infor-
mation about combining multiple term queries is discussed in section 4.3 about com-
pound queries.

4.2.3 Match query and term filter

Similar to the term query, the match query is a hash map containing the field you’d
like to search as well as the string you want to search for, which can be either a field or
the special _all field to search all fields at once. Here’s an example match query,
searching for groups where name contains “elasticsearch”:

% curl 'localhost:9200/get-together/group/_search' –d '
{
 "query": {
 "match": {
 "name": "elasticsearch"
 }
 }
}'

The match query can behave in a number of different ways; the two most important
behaviors are boolean and phrase.

BOOLEAN QUERY BEHAVIOR

By default, the match query uses Boolean behavior and the OR operator. For example,
if you search for the text “Elasticsearch Denver,” Elasticsearch searches for “Elastic-
search OR Denver,” which would match get-together groups from both “Elasticsearch
Amsterdam” and “Denver Clojure Group.”

 To search for results that contain both “Elasticsearch” and “Denver,” change the
operator by modifying the match field name into a map and setting the operator field
to and:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "match": {
 "name": {
 "query": "Elasticsearch Denver",
 "operator": "and"
 }
 }
 }
}'

The second important way a match query can behave is as a phrase query.

PHRASE QUERY BEHAVIOR

A phrase query is useful when searching for a specific phrase within a document, with
some amount of leeway between the positions of each word. This leeway is called slop,
which is a number representing the distance between tokens in a phrase. Say you’re

Uses a map instead of a
string for the name value

Specifies
search string
in a query key

Uses and operator
instead of default
or operator
Licensed to Thomas Snead <n.ordickan@gmail.com>

103Introducing the query and filter DSL
trying to remember the name of a get-together group; you remember it had the words
“Enterprise” and “London” in it, but you don’t remember the rest of the name. You
could search for the phrase “enterprise london” with slop set to 1 or 2 instead of the
default of 0 to find results containing that phrase without having to know the exact
title of the group:

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "match": {
 "name": {
 "type": "phrase",
 "query": "enterprise london",
 "slop": 1
 }
 }
 },
 "_source": ["name", "description"]
}'
...
{
 "_id": "5",
 "_index": "get-together",
 "_score": 1.7768369,
 "_type": "group",
 "_source": { "description": "Enterprise search get-togethers are an
 ➥ opportunity to get together with other people doing search.",
 "name": "Enterprise search London get-together"
 }
}
...

4.2.4 Phrase_prefix query

Similar to the match_phrase query, the match_phrase_prefix query allows you to go
one step further and search for a phrase, but it allows prefix matching on the last term
in the phrase. This behavior is extremely useful for providing a running autocomplete
for a search box, where the user gets search suggestions while typing a search term.
When using the search for this kind of behavior, it’s a good idea to set the maximum
number of expansions for the prefix by setting the max_expansions setting so the
search returns in a reasonable amount of time.

 In the following example, “elasticsearch den” is used as the phrase_prefix query.
Elasticsearch takes the “den” text and looks across all the values of the name field to
check for those that start with “den” (“Denver,” for example). Because this could
potentially be a large set, the number of expansions should be limited:

% curl 'localhost:9200/get-together/group/_search' –d '
{
 "query": {
 "match": {
 "name": {

Instead of a regular
match query, use a
match phrase query.

Specifies a slop of 1 to
tell Elasticsearch to have
leeway with the distance
between the terms

The matching field with
“enterprise” and “london”

separated by a word
Licensed to Thomas Snead <n.ordickan@gmail.com>

104 CHAPTER 4 Searching your data
 "type": "phrase_prefix",
 "query": "Elasticsearch den",
 "max_expansions": 1
 }
 }
 },
 "_source": ["name"]
}'
...
{
 "_id": "2",
 "_index": "get-together",
 "_score": 2.7294521,
 "_type": "group",
 "_source": {
 "name": "Elasticsearch Denver"
 }
}
...

The Boolean and phrase queries are a great choice for accepting user input; they allow
you to pass in user input in a much less error-prone way, and unlike a query_string
query, a match query won’t choke on reserved characters like +, -, ?, and !.

MATCHING MULTIPLE FIELDS WITH MULTI_MATCH

Although it might be tempting to think that the multi_match query behaves like the
terms query by searching for multiple matches in a field, its behavior is slightly differ-
ent. Instead, it allows you to search for a value across multiple fields. This can be help-
ful in the get-together example where you may want to search for a string across both
the name of the group and the description:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "multi_match": {
 "query": "elasticsearch hadoop",
 "fields": ["name", "description"]
 }
 }
}'

Just as the match query can be turned into a phrase query, a prefix query, or a
phrase_prefix query, the multi_match query can be turned into a phrase query or
phrase_prefix query as well by specifying the type key. Consider the multi_match
query exactly like the match query, except that you can specify multiple fields for
searching instead of a single field only.

 With all the different match queries, it’s possible to find a way to search for almost
anything, which is why the match query and its relatives are considered the go-to query
type for most uses. We highly recommended that you use them whenever possible. For
everything else, however, we’ll cover some of the other types of queries that Elastic-
search supports.

Uses a phrase_prefix
instead of a regular
phrase query

Matches fields containing
“Elasticsearch” and another
term that starts with “den”

Specifies the maximum
number of prefix
expansions to try
Licensed to Thomas Snead <n.ordickan@gmail.com>

105Combining queries or compound queries
4.3 Combining queries or compound queries
After learning about and using different types of queries, you’ll likely find yourself
needing to combine query types; this is where Elasticsearch’s bool query comes in.

4.3.1 bool query

The bool query allows you to combine any number of queries into a single query by
specifying a query clause that indicates which parts must, should, or must_not match
the data in your Elasticsearch index:

■ If you specify that part of a bool query must match, only results matching that
query (or queries) are returned.

■ Specifying that a part of a query should match means that a specified number
of the clauses must match for a document to be returned.

■ If no must clauses are specified, at least one should clause has to match for the
document to be returned.

■ Finally, the must_not clause causes matching documents to be excluded from
the result set.

Table 4.1 lists the three clauses and their binary counterparts.

Understanding the difference between must, should, and must_not may be easier
through an example. In the following listing, you search for events that were attended
by David, must be attended by either Clint or Andy, and must not be older than
June 30, 2013.

Table 4.1 bool query clause types

bool query clause Binary equivalent Meaning

must To combine multiple clauses, use
a binary and (query1 AND
query2 AND query3).

Any searches in the must clause must
match the document; lowercase and is a
function; uppercase AND is an operator.

must_not Combines multiple clauses with
a binary not.

Any searches in the must_not clause
must not be part of the document; multiple
clauses are combined in a binary not man-
ner (NOT query1 AND NOT query2 AND
NOT query3).

Should Combines multiple clauses with
a binary or (query 1 OR
query2 OR query3).

Searches in the should clause may or
may not match a document, but at least the
minimum_should_match parameter
number of them should match (defaults to
1 if must is not present and 0 if must is
present); similar to a binary OR (query1
OR query2 OR query3).
Licensed to Thomas Snead <n.ordickan@gmail.com>

106 CHAPTER 4 Searching your data
% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "attendees": "david"
 }
 }
],
 "should": [
 {
 "term": {
 "attendees": "clint"
 }
 },
 {
 "term": {
 "attendees": "andy"
 }
 }
],
 "must_not": [
 {
 "range" :{
 "date": {
 "lt": "2013-06-30T00:00"
 }
 }
 }
],
 "minimum_should_match": 1
 }
 }
}'
{
 "_shards": {
 "failed": 0,
 "successful": 2,
 "total": 2
 },
"max_score": 0.56109595,
 "total": 1,
 "hits": {
 "hits": [
 {
 "_id": "110",
 "_index": "get-together",
 "_score": 0.56109595,
 "_type": "event",
 "_source": {
 "attendees": [

Listing 4.20 Combining queries with a bool query

Query that must
match resulting
documents

First query that
should match
documents

Second query that
should match
documents

Query that
must not match
resulting
documents

Minimum number of
should clauses that have
to match a document to
return it as a result
Licensed to Thomas Snead <n.ordickan@gmail.com>

107Combining queries or compound queries
 "Andy",
 "Michael",
 "Ben",
 "David"
],
 "date": "2013-07-31T18:00",

➥ "description": "Discussion about the Microsoft

➥ Azure cloud and HDInsight.",
 "host": "Andy",
 "location": {
 "geolocation": "40.018528,-105.275806",
 "name": "Bing Boulder office"
 },
 "title": "Big Data and the cloud at Microsoft"
 }
 }
],
 },
 "timed_out": false,
 "took": 67
}

4.3.2 bool filter

The filter version of the bool query acts almost exactly like the query version, but
instead of combining queries, it combines filters. The filter equivalent of the previous
example is shown in the following listing.

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "bool": {
 "must": [
 {
 "term": {
 "attendees": "david"
 }
 }
],
 "should": [
 {
 "term": {
 "attendees": "clint"
 }
 },
 {
 "term": {
 "attendees": "andy"

Listing 4.21 Combining filters with the bool filter
Licensed to Thomas Snead <n.ordickan@gmail.com>

108 CHAPTER 4 Searching your data
 }
 }
],
 "must_not": [
 {
 "range" :{
 "date": {
 "lt": "2013-06-30T00:00"
 }
 }
 }
]
 }
 }
 }
 }
}'

As you saw in the bool query (listing 4.20), the minimum_should_match setting of the
query version lets you specify the minimum number of should clauses that have to
match for a result to be returned. In listing 4.21, the default value of 1 is used; the
bool filter does not support this property.

IMPROVING THE BOOL QUERY

The provided bool query is slightly contrived, but it includes all three of the bool
query options: must, should, and must_not. You could rewrite this bool query in a bet-
ter form like this:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "attendees": "david"
 }
 },
 {
 "range" :{
 "date": {
 "gte": "2013-06-30T00:00"
 }
 }
 },
 {
 "terms": {
 "attendees": ["clint", "andy"]
 }
 }
]
 }
 }
}'... same results as the previous query ...

gte stands for
greater than or
equal to.
Licensed to Thomas Snead <n.ordickan@gmail.com>

109Beyond match and filter queries
Note that this query is smaller than the previous query. By inverting the range
query from lt (less than) to gte (greater than or equal to), you can move it from
the must_not section to the must section. You can also collapse the two separate
should queries into a single terms query instead of two term queries. Now you can
replace the minimum_should_match of 1 and the should clause by moving the terms
query into the must clause as well. Elasticsearch has a flexible query language, so
don’t be afraid to experiment with how queries are formed as you’re sending them
to Elasticsearch!

 With the bool query and filter under your belt, you can combine any number of
queries and filters. We can now return to the other types of queries that Elasticsearch
supports. You already know about the term query, but what if you want Elasticsearch to
analyze the data you’re sending it? The match query is exactly what you need.

NOTE The option minimum_should_match has some hidden features for
default values. If you specify a must clause, the minimum_should_match has a
default value of 0. If there’s no must clause, the default value is 1.

4.4 Beyond match and filter queries
General-purpose queries that we’ve discussed so far, such as the query_string and the
match queries, are particularly useful when the user is faced with a search box because
you can run such a query with the words the user types in.

 To narrow the scope of a search, some user interfaces also include other ele-
ments next to the search box, such as a calendar widget that allows you to search for
newly created groups or a check box for filtering events that have a location already
established.

4.4.1 Range query and filter

The range query and filter are self-explanatory; they’re used to query for values
between a certain range and can be used for numbers, dates, and even strings.

 To use the range query, you specify the top and bottom values for a field. For
example, to search for all groups created after June 1 and before September 1, 2012
in the index, use the following query:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "range": {
 "created_on": {
 "gt": "2012-06-01",
 "lt": "2012-09-01"
 }
 }
 }
}'

Specifies a date range
using gt (greater than)
and lt (less than)
Licensed to Thomas Snead <n.ordickan@gmail.com>

110 CHAPTER 4 Searching your data
Or you could use a filter instead:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "range": {
 "created_on": {
 "gt": "2012-06-01",
 "lt": "2012-09-01"
 }
 }
 }
 }
 }
}'

See table 4.2 for the meaning of the parameters gt, gte, lt, and lte.

The range query also supports ranges of strings, so if you wanted to search for all the
groups in get-togethers between "c" and "e", you could search using the following:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "range": {
 "name": {
 "gt": "c",
 "lt": "e"
 }
 }
 }
}'

When you use the range query, think long and hard about whether a filter would be a
better choice. Because documents that fall into the range of the query have a binary
match (”Yes, this document is in the range” or “No, this document isn’t in the range”),

Table 4.2 Range query parameters

Parameter Meaning

gt Search for fields greater than the value, not including the value.

gte Search for fields greater than the value, including the value.

lt Search for fields less than the value, not including the value.

lte Search for fields less than the value, including the value.

By using match_all, you
could leave out the query
part; this is the default.

Searches for a
created_on date
after June 1…

… as well as a
created_on date
before September 1
Licensed to Thomas Snead <n.ordickan@gmail.com>

111Beyond match and filter queries
the range query doesn’t need to be a query. For better performance, it should be a fil-
ter. If you’re unsure whether to make it a query or a filter, make it a filter. In 99% of
cases, making a range query a filter is the right thing to do.

4.4.2 Prefix query and filter

Similar to the term query, the prefix query and filter allow you to search for a term
containing the given prefix, where the prefix isn’t analyzed before searching. For
example, to search the index for all events that start with “liber,” the following query
is used:

% curl 'localhost:9200/get-together/event/_search' –d '
{
 "query": {
 "prefix": {
 "title": "liber"
 }
 }
}'

And, similarly, you can use a filter instead of a regular query, which has almost the
same syntax:

% curl 'localhost:9200/get-together/event/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "prefix": {
 "title": "liber"
 }
 }
 }
 }
}'

But wait! What happens if you were to send the same request but with “Liber” instead
of “liber”? Because the search prefix isn’t analyzed before being sent, it won’t find the
terms that have been lowercased in the index. This is because of the way Elasticsearch
analyzes documents and queries, which we cover in much more depth in chapter 5.
Because of this behavior, the prefix query is a good choice for autocompletion of a
partial term that a user enters if the term is part of the index. For example, you could
provide a categories input box when existing categories are already known. If a user
was typing terms that were part of an index, you could take the text entered into a
search box by the user, lowercase it, and then use a prefix query to see what other
results show up. Once you have matching results from a prefix query, you can offer
them as suggestions while the user is typing. But if you need to analyze the term or
want an amount of fuzziness in the results, it’s probably better to stick with the
Licensed to Thomas Snead <n.ordickan@gmail.com>

112 CHAPTER 4 Searching your data
match_phrase_prefix query for autocomplete functionality. We’ll talk more about
suggestions and suggesters in appendix F.

4.4.3 Wildcard query

You may be tempted to think of the wildcard query as a way to search with regular
expressions, but in truth, the wildcard query is closer to the way shell wildcard glob-
bing works; for example, running

ls *foo?ar

matches words such as “myfoobar,” “foocar,” and “thefoodar.”
 Using a string, you can allow Elasticsearch to substitute either any number of

characters (including none of them) for the * wildcard or a single character for the
? wildcard.

 For example, a query for “ba*n” would match “bacon,” “barn,” “ban,” and “baboon”
because the * can be any character sequence, whereas a query for “ba?n” would match
only “barn” because ? must match a single character at all times. Listing 4.22 demon-
strates these wildcard queries using a new index called wildcard-test.

 You can also mix and match with multiple * and ? characters to match a more
complex wildcard pattern, but keep in mind that when a string is analyzed, spaces are
stripped out by default, so ? can’t match a space if spaces aren’t indexed.

% curl -XPOST 'localhost:9200/wildcard-test/doc/1' –d '
{"title":"The Best Bacon Ever"}'
% curl -XPOST 'localhost:9200/wildcard-test/doc/2' -d'
{"title":"How to raise a barn"}'

% curl 'localhost:9200/wildcard-test/_search' -d'
{
 "query": {
 "wildcard": {
 "title": {
 "wildcard": "ba*n"
 }
 }
 }
}'
{
 ...
 "hits" : [{
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"title":"The Best Bacon Ever"}
 }, {

Listing 4.22 Example wildcard query

“ba*n” matches both
bacon and barn.
Licensed to Thomas Snead <n.ordickan@gmail.com>

113Querying for field existence with filters
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"title":"How to raise a barn"}
 }]
 ...
}

% curl 'localhost:9200/wildcard-test/_search' –d '
{
 "query": {
 "wildcard": {
 "title": {
 "wildcard": "ba?n"
 }
 }
 }
}'
{
 ...
 "hits" : [{
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"title":"How to raise a barn"}
 }]
 ...
}

Something to note when using this query is that the wildcard query isn’t as light-
weight as other queries like the match query; the sooner a wildcard character (* or ?)
occurs in the query term, the more work Lucene and Elasticsearch have to do to
match it. Take, for example, the search term “h*”; Elasticsearch must now match every
term starting with “h”. If the term was “hi*”, Elasticsearch would only have to search
through every term starting with “hi”, which is a smaller subset of all terms starting
with “h”. Because of this overhead and performance considerations, be careful to test
the wildcard query on a copy of your data before putting these queries into produc-
tion! We’ll talk more about a similar query, the regexp query, in chapter 6, where we
discuss searching with relevancy.

4.5 Querying for field existence with filters
Sometimes when querying Elasticsearch, it can be helpful to search for all the docu-
ments that don’t have a field or are missing a value in the field. In the get-together
index, for example, you might want to search for all groups that don’t have a review.
On the other hand, you may also want to search for all the documents that have a
field, regardless of what the content of the field is. This is where the exists and
missing filters come in, both of which act only as filters, not as regular queries.

“ba?n” matches only
barn, not bacon.
Licensed to Thomas Snead <n.ordickan@gmail.com>

114 CHAPTER 4 Searching your data
4.5.1 Exists filter

As the name suggests, the exists filter allows you to filter any query to documents
that have a value in a particular field, whatever that value may be. Here’s what the
exists filter looks like:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "exists": { "field": "location.geolocation" }
 }
 }
 }
}'
... only documents with the location.geolocation field are returned ...

On the opposite side, you can use the missing filter.

4.5.2 Missing filter

The missing filter allows you to search for documents that have no value or where the
value is a default value (also called the null value, or null_value in the mapping) that
was specified during the mapping. To search for documents that are missing the
reviews field, you’d use a filter like this:

% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "missing": {
 "field": "reviews",
 "existence": true,
 "null_value": true
 }
 }
 }
 }
}'

If you wanted to expand that filter to also match documents that are missing the field
entirely and that might have the null_value field, you can specify a Boolean value for
the existence and null_value fields. The response includes documents that have
null_value set in the field, as shown in the next listing.

Finds documents
missing the reviews
field entirely
Licensed to Thomas Snead <n.ordickan@gmail.com>

115Querying for field existence with filters
% curl 'localhost:9200/get-together/_search' –d '
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "missing": {
 "field": "reviews",
 "existence": false,
 "null_value": true
 }
 }
 }
 }
}'

Both the missing and exists filters are cached by default.

4.5.3 Transforming any query into a filter

So far, we’ve talked about the different types of queries and filters that Elasticsearch
supports, but we’ve been limited to using only the filters that are already provided.
Sometimes you may want to take a query such as query_string, which has no filter
equivalent, and turn it into a filter. You rarely need this, but if you need full-text
search within the filter context, you can use this. Elasticsearch allows you to do this
with the query filter, which takes any query and turns it into a filter.

 To transform a query_string query that searches for a name matching “denver
clojure” to a filter, you’d use a search like this:

% curl 'localhost:9200/get-together/_search' –d '
{
 “query”: {
 “filtered”: {
 "query": {
 "match_all": {}
 },
 "filter": {
 "query" : {
 "query_string" : {
 "query" : "name:\"denver clojure\""
 }
 }
 }
 }
 }
}'

Using this, you can get some of the benefits of a filter (such as not having to calculate
a score for that part of the query). You can also choose to cache this filter if it turns

Listing 4.23 Specify existence and null_value fields as Boolean values

Again, find documents
missing the reviews field.

Match documents that
have nothing in the
reviews field.

Also match documents
that have the null_value
in the reviews field.

Using the query filter to
wrap a query that doesn’t
have a filter equivalent
Licensed to Thomas Snead <n.ordickan@gmail.com>

116 CHAPTER 4 Searching your data
out to be used many times; the syntax for caching looks slightly different than adding
the _cache key, as shown in the next listing.

% curl 'localhost:9200/get-together/_search' –d '
{
 “query”: {
 “filtered”: {
 "query": {
 "match_all": {}
 },
 "filter": {
 "fquery": {
 "query" : {
 "query_string" : {
 "query" : "name:\"denver clojure\""
 }
 },
 "_cache": true
 }
 }
 }
 }
}'

The query part of the query has moved inside a new key named fquery, which is
where the _cache key now resides. If you find yourself often using a particular query
that doesn’t have a filter equivalent (like one of the match queries or a query_string
query), you may want to cache it, assuming the score for that particular part of the
query isn’t important.

4.6 Choosing the best query for the job
Now that we’ve covered some of the most popular Elasticsearch queries, let’s look at
how to decide which queries to use and when. Although there’s no hard-and-fast rule
for which query to use for what, table 4.3 helps you determine which query to use for
the general case.

Listing 4.24 Caching query filter

Table 4.3 Which type of query to use for general use cases

Use case Query type to use

You want to take input from a user, similar to a
Google-style interface, and search for documents
with the input.

Use a match query or the
simple_query_string query if you want to
support +/- and search in specific fields.

You want to take input as a phrase and search
for documents containing that phrase, perhaps
with some amount of leniency (slop).

Use a match_phrase query with an amount of
slop to find phrases similar to what the user is
searching for.

The query part is
now inside the
fquery map.

Tells Elasticsearch
to cache this filter
Licensed to Thomas Snead <n.ordickan@gmail.com>

117Summary
4.7 Summary
Filters can speed up queries by skipping over the scoring calculations and by caching.
In this chapter you learned the following:

■ Human-language type queries, such as the match and query_string queries,
are suitable for search boxes.

■ The match query is the go-to query for full-text search, but the query_string
query is both more flexible and more complex because it exposes the full
Lucene query syntax.

■ The match query has multiple subtypes: boolean, phrase, and phrase_prefix.
The main difference is that boolean matches individual words, whereas the
phrase types take the order of words into account, as if they were in a phrase.

■ Specialized queries such as the prefix and wildcard queries are also supported.
■ To filter documents where a field doesn’t exist, use the missing filter.
■ The exists filter does the exact opposite; it returns only documents having the

specified field value.

Other types of queries are available that allow you to tune your relevance. We’ll dis-
cuss them in chapter 6. Matching results and their relevance is heavily influenced by
how the text is analyzed. Chapter 5 covers the details of analysis.

You want to search for a single word in a
not_analyzed field, knowing exactly how the
word should appear.

Use a term query because query terms aren’t
analyzed.

You want to combine many different searches or
types of searches, creating a single search out
of them.

Use the bool query to combine any number of sub-
queries into a single query.

You want to search for certain words across
many fields in a document.

Use the multi_match query, which behaves simi-
larly to the match query but on multiple fields.

You want to return every document from a
search.

Use the match_all query to return all documents
from a search.

You want to search a field for values that are
between two specified values.

Use a range query to search within documents
with values between a certain range.

You want to search a field for values that start
with a specified string.

Use a prefix query to search for terms starting
with a given string.

You want to autocomplete the value of a single
word based on what the user has already
typed in.

Use a prefix query to send what the user has
typed in and get back exact matches starting with
the text.

You want to search for all documents that have
no value for a specified field.

Use the missing filter to filter out documents that
are missing fields.

Table 4.3 Which type of query to use for general use cases

Use case Query type to use
Licensed to Thomas Snead <n.ordickan@gmail.com>

Analyzing your data
So far we’ve covered indexing and searching your data, but what actually happens
when you send data to Elasticsearch? What happens to the text sent in a document
to Elasticsearch? How can Elasticsearch find specific words within sentences, even
when the case changes? For example, when a user searches for “nosql,” generally
you’d like a document containing the sentence “share your experience with NoSql
& big data technologies” to match, because it contains the word NoSql. You can use
the information you learned in the previous chapter to do a query_string search
for “nosql” and find the document. In this chapter you’ll learn why using the query
string query will return the document. Once you finish this chapter you’ll have a

This chapter covers
■ Analyzing your document’s text with

Elasticsearch
■ Using the analysis API
■ Tokenization
■ Character filters
■ Token filters
■ Stemming
■ Analyzers included with Elasticsearch
118

Licensed to Thomas Snead <n.ordickan@gmail.com>

119What is analysis?
better idea how Elasticsearch’s analysis allows you to search your document set in a
more flexible manner.

5.1 What is analysis?
Analysis is the process Elasticsearch performs on the body of a document before the
document is sent off to be added to the inverted index. Elasticsearch goes through a
number of steps for every analyzed field before the document is added to the index:

■ Character filtering—Transforms the characters using a character filter
■ Breaking text into tokens—Breaks the text into a set of one or more tokens
■ Token filtering—Transforms each token using a token filter
■ Token indexing—Stores those tokens into the index

We’ll talk about each step in more detail next, but first let’s look at the entire pro-
cess summed up in a diagram. Figure 5.1 shows the text “share your experience with
NoSql & big data technologies” transformed into the analyzed tokens: share, your,
experience, with, nosql, big, data, tools, and technologies. The presented analyzer

Original text

Custom

analyzer

"share your

experience with NoSql &

big data technologies"

share

share your experience with NoSql and big data technologies

experience

your

share your

with

experience with

nosql

tools

big

technologies

technologies

data

share

experience

your

with

nosql

tools

and

technologies

big data

NoSql bigand data

Token filter chain

Character filter:

& => and

Standard tokanizer

Token filters

Lowercase

Stop words

Synonyms:

technologies,

tools

Figure 5.1 Overview of the analysis process of a custom analyzer using standard components
Licensed to Thomas Snead <n.ordickan@gmail.com>

120 CHAPTER 5 Analyzing your data
is a custom analyzer created using provided character filters, tokenizers, and token fil-
ters. Later in this chapter we discuss the custom analyzer in more depth.

5.1.1 Character filtering

As you can see in the upper left of the figure, Elasticsearch first runs the character fil-
ters; these filters are used to transform particular character sequences into other char-
acter sequences. This can be used for things like stripping HTML out of text or
converting an arbitrary number of characters into other characters (perhaps correct-
ing the text-message shortening of “I love u 2” into “I love you too”). In figure 5.1 we
use the character filter to replace “&” with the word “and.”

5.1.2 Breaking into tokens

After the text has had the character filters applied, it needs to be split into pieces that
can be operated on. Lucene itself doesn’t act on large strings of data; instead, it acts
on what are known as tokens. Tokens are generated out of a piece of text, which results
in any number (even zero!) of tokens. In English, for example, a common tokeniza-
tion that can be used is the standard tokenizer, which splits text into tokens, based on
whitespace like spaces and newlines, but also on some characters like the dash. In fig-
ure 5.1 this is represented by breaking the string “share your experience with NoSql
and big data technologies” into the tokens share, your, experience, with, NoSql, and,
big, data, and technologies.

5.1.3 Token filtering

Once the block of text has been converted into tokens, Elasticsearch will then apply
what are called token filters to each token. These token filters take a token as input and
can modify, add, or remove more tokens as needed. One of the most useful and com-
mon examples of a token filter is the lowercase token filter, which takes in a token and
lowercases it to ensure that you will be able to find a get-together about “NoSql” when
searching for the term “nosql.” The tokens can go through more than one token fil-
ter, each doing different things to the tokens to mold the data into the best format for
your index.

 In the example in figure 5.1 there are three token filters: the first lowercasing the
tokens, the second removing the stopword “and” (we’ll talk about stopwords later in this
chapter), and the third adding the term “tools” to “technologies,” using synonyms.

5.1.4 Token indexing

After the tokens have gone through zero or more token filters, they’re sent to Lucene
to be indexed for the document. These tokens make up the inverted index we dis-
cussed back in chapter 1.

 Together, these different parts make up an analyzer, which can also be defined as
zero or more character filters, a tokenizer, and zero or more token filters. There are
Licensed to Thomas Snead <n.ordickan@gmail.com>

121Using analyzers for your documents
some prebuilt analyzers we’ll talk about later on in this chapter that you can use with-
out having to construct your own, but first we’ll talk about the individual components
of an analyzer.

Now that you have an understanding of what goes on during Elasticsearch’s analysis
phase, let’s talk about how analyzers are specified for fields in your mapping and how
custom analyzers are specified.

5.2 Using analyzers for your documents
Knowing about the different types of analyzers and token filters is fine, but before
they can actually be used, Elasticsearch needs to know how you want to use them. For
instance, you can specify in the mapping which individual tokenizer and token filters
to use for an analyzer and which analyzer to use for which field.

 There are two ways to specify analyzers that can be used by your fields:

■ When the index is created, as settings for that particular index
■ As global analyzers in the configuration file for Elasticsearch

Generally, to be more flexible, it’s easier to specify analyzers at the index-creation
time, which is also when you want to specify your mappings. This allows you to create
new indices with updated or entirely different analyzers. On the other hand, if you
find yourself using the same set of analyzers across your indices without changing
them very often, you can also save some bandwidth by putting the analyzers into the
configuration file. Examine how you’re using Elasticsearch and pick the option that
works best for you. You could even combine the two and put the analyzers that are
used by all of your indices into the configuration file and specify additional analyzers
for added stability when you create indices.

 Regardless of the way you specify your custom analyzers, you’ll need to specify
which field uses which analyzer in the mapping of your index, either by specifying the
mapping when the index is created or using the “put mapping API” to specify it at a
later time.

Analysis while executing a search
Depending on what kind of query you use, this analysis can also be applied to the
search text before the search is performed against the index. In particular, queries
such as the match and match_phrase queries perform analysis before searching,
and queries like the term and terms query do not. It’s important to keep this in mind
when debugging why a particular search matches or doesn’t match a document—it
might be analyzed differently than what you expect! There’s even a configuration
option to configure a different analyzer for the searched text than for the indexed text.
More on this when we discuss the ngram analyzer. Check section 4.2.1 for more
details on the match and term queries.
Licensed to Thomas Snead <n.ordickan@gmail.com>

122 CHAPTER 5 Analyzing your data

in
5.2.1 Adding analyzers when an index is created

In chapter 3 you saw some of the settings when an index is created, notably settings
for the number of primary and replica shards for an index, which look something like
the following listing.

% curl -XPOST 'localhost:9200/myindex' -d '
{
 "settings" : {
 "number_of_shards": 2,
 "number_of_replicas": 1
 },
 "mappings" : {
 ...
 }
}'

Adding a custom analyzer is done by specifying another map in the settings configura-
tion under the index key. This key should specify the custom analyzer you want to use,
and it can also contain the custom tokenizer, token filters, and char filters that the
index can use. The next listing shows a custom analyzer that specifies custom parts for
all the analysis steps. This is a complex example, so we’ve added some headings to
show the different parts. Don’t worry about all the code details yet because we’ll go
through them later on in this chapter.

% curl -XPOST 'localhost:9200/myindex' -d '
{
 "settings" : {
 "number_of_shards": 2,
 "number_of_replicas": 1,
 "index": {
 "analysis": {

Custom analyzer

 "analyzer": {
 "myCustomAnalyzer": {
 "type": "custom",
 "tokenizer": "myCustomTokenizer",
 "filter": ["myCustomFilter1", "myCustomFilter2"],
 "char_filter": ["myCustomCharFilter"]
 }
 },

Listing 5.1 Setting the number of primary and replica shards

Listing 5.2 Adding a custom analyzer during index creation

Specifying custom settings
for the index, here specifying
two primary shards

Specifying
one replica

Mappings for
the index

Other settings for
the index that we’ve
covered beforeOther

dex-level
settings

Analysis settings
for this index

Specifying a
custom analyzer in
the analyzer object

Custom
analyzer named
myCustomAnalyzerIt’s of type

custom.

Uses myCustom-
Tokenizer to
tokenize text

Specifies two filters that text should
be run through, myCustomFilter1
and myCustomFilter2

Specifies custom char filter,
myCustomCharFilter, that

will run before other
analysis
Licensed to Thomas Snead <n.ordickan@gmail.com>

123Using analyzers for your documents
Tokenizer
 "tokenizer": {
 "myCustomTokenizer": {
 "type": "letter"
 }

Custom filters
 },
 "filter": {
 "myCustomFilter1": {
 "type": "lowercase"
 },
 "myCustomFilter2": {
 "type": "kstem"
 }
 },

Character filter
 "char_filter": {
 "myCustomCharFilter": {
 "type": "mapping",
 "mappings": ["ph=>f", "u=>you"]
 }
 }
 }
 }
 },

Mappings
 "mappings" : {
 ...
 }
}'

The mappings have been left out of the code listing here because we’ll cover how to
specify the analyzer for a field in section 5.2.3. In this example you create a custom ana-
lyzer called myCustomAnalyzer, which uses the custom tokenizer myCustomTokenizer,
two custom filters named myCustomFilter1 and myCustomFilter2, and a custom char-
acter filter named myCustomCharFilter (notice a trend here?). Each of these separate
analysis parts is given in its respective JSON submaps. You can specify multiple analyz-
ers with different names and combine them into custom analyzers to give you flexible
analysis options when indexing and searching.

 Now that you have a sense of what adding custom analyzers looks like when an
index is created, let’s look at the same analyzers added to the Elasticsearch configura-
tion itself.

5.2.2 Adding analyzers to the Elasticsearch configuration

In addition to specifying analyzers with settings during index creation, adding analyz-
ers into the Elasticsearch configuration file is another supported way to specify cus-
tom analyzers. But there are tradeoffs to this method; if you specify the analyzers
during index creation, you’ll always be able to make changes to the analyzers without

Specifies custom
tokenizer of type letter

Two custom token filters,
one for lowercasing and
another using kstem

Custom char filter that
translates characters
to other mappings

Mappings for
creating the index
Licensed to Thomas Snead <n.ordickan@gmail.com>

124 CHAPTER 5 Analyzing your data
restarting Elasticsearch. But if you specify the analyzers in the Elasticsearch configura-
tion, you’ll need to restart Elasticsearch to pick up any changes you make to the ana-
lyzers. On the flip side, you’ll have less data to send when creating indices. Although
it’s generally easier to specify them at index creation for a larger degree of flexibility,
if you plan to never change your analyzers, you can go ahead and put them into the
configuration file.

 Specifying analyzers in the elasticsearch.yml configuration file is similar to specify-
ing them as JSON; here are the same custom analyzers from the previous section but
specified in the configuration YAML file:

index:
 analysis:
 analyzer:
 myCustomAnalyzer:
 type: custom
 tokenizer: myCustomTokenizer
 filter: [myCustomFilter1, myCustomFilter2]
 char_filter: myCustomCharFilter
 tokenizer:
 myCustomTokenizer:
 type: letter
 filter:
 myCustomFilter1:
 type: lowercase
 myCustomFilter2:
 type: kstem
 char_filter:
 myCustomCharFilter:
 type: mapping
 mappings: ["ph=>f", "u =>you"]

5.2.3 Specifying the analyzer for a field in the mapping

There’s one piece of the puzzle left to solve before you can analyze fields with custom
analyzers: how to specify that a particular field in the mapping should be analyzed
using one of your custom analyzers. It’s simple to specify the analyzer for a field by set-
ting the analyzer field on a mapping. For instance, if you had the mapping for a field
called description, specifying the analyzer would look like this:

{
 "mappings" : {
 "document" : {
 "properties" : {
 "description" : {
 "type" : "string",
 "analyzer" : "myCustomAnalyzer"
 }
 }
 }
 }
}

Specifying the analyzer
myCustomAnalyzer for
the description field
Licensed to Thomas Snead <n.ordickan@gmail.com>

125Using analyzers for your documents
If you want a particular field to not be analyzed at all, you need to specify the index
field with the not_analyzed setting. This keeps the text as a single token without any
kind of modification (no lowercasing or anything). It looks something like this:

{
 "mappings" : {
 "document" : {
 "properties" : {
 "name" : {
 "type" : "string",
 "index" : "not_analyzed"
 }
 }
 }
 }
}

A common pattern for fields where you may want to search on both the analyzed and
verbatim text of a field is to place them in multi-fields.

USING MULTI-FIELD TYPE TO STORE DIFFERENTLY ANALYZED TEXT

Often it’s helpful to be able to search on both the analyzed version of a field as well as
the original, non-analyzed text. This is especially useful for things like aggregations or
sorting on a string field. Elasticsearch makes this simple to do by using multi-fields,
which you first saw in chapter 3. Take the name field of groups in the get-together
index, for example; you may want to be able to sort on the name field but search
through it using analysis. You can specify a field that does both like this:

% curl -XPOST 'localhost:9200/get-together' -d '

{
 "mappings": {
 "group": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "standard",
 "fields": {
 "raw": {
 "index": "not_analyzed",
 "type": "string"
 }
 }
 }
 }
 }
 }
}'

We’ve covered how to specify analyzers; now we’ll show you a neat way to check how
any arbitrary text can be analyzed: the analyze API.

Specifying that the
name field is not
to be analyzed

The original analysis,
using the standard
analyzer, can be left out
and is the default.

A raw version of the
field, which isn’t
analyzed
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

126 CHAPTER 5 Analyzing your data
5.3 Analyzing text with the analyze API
Using the analyze API to test the analysis process can be extremely helpful when track-
ing down how information is being stored in your Elasticsearch indices. This API
allows you to send any text to Elasticsearch, specifying what analyzer, tokenizer, or
token filters to use, and get back the analyzed tokens. The following listing shows an
example of what the analyze API looks like, using the standard analyzer to analyze the
text “share your experience with NoSql & big data technologies.”

% curl -XPOST 'localhost:9200/_analyze?analyzer=standard' -d 'share your
experience with NoSql & big data technologies'
"tokens" : [{
 "token" : "share",
 "start_offset" : 0,
 "end_offset" : 5,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "your",
 "start_offset" : 6,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "experience",
 "start_offset" : 11,
 "end_offset" : 21,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "with",
 "start_offset" : 22,
 "end_offset" : 26,
 "type" : "<ALPHANUM>",
 "position" : 4
 }, {
 "token" : "nosql",
 "start_offset" : 27,
 "end_offset" : 32,
 "type" : "<ALPHANUM>",
 "position" : 5
 }, {
 "token" : "big",
 "start_offset" : 35,
 "end_offset" : 38,
 "type" : "<ALPHANUM>",
 "position" : 6
 }, {
 "token" : "data",
 "start_offset" : 39,
 "end_offset" : 43,

Listing 5.3 Example of using the analyze API

The analyzed
tokens: share, your,
experience, with,
nosql, big, data,
and technologies
Licensed to Thomas Snead <n.ordickan@gmail.com>

127Analyzing text with the analyze API
 "type" : "<ALPHANUM>",
 "position" : 7
 }, {
 "token" : "technologies",
 "start_offset" : 44,
 "end_offset" : 56,
 "type" : "<ALPHANUM>",
 "position" : 8
 }]
}

The most important output from the analysis API is the token key. The output is a list
of these maps, which gives you a representation of what the processed tokens (the
ones that are going to actually be written to the index) look like. For example, with
the text “share your experience with NoSql & big data technologies,” you get back
eight tokens: share, your, experience, with, nosql, big, data, and technologies.
Notice that in this case, with the standard analyzer, each token was lowercased and the
punctuation at the end of the sentence was removed. This is a great way to test docu-
ments to see how Elasticsearch will analyze them, and it has quite a few ways to cus-
tomize the analysis that’s performed on the text.

5.3.1 Selecting an analyzer

If you already have an analyzer in mind and want to see how it handles some text, you
can set the analyzer parameter to the name of the analyzer. We’ll go over the differ-
ent built-in analyzers in the next section, so keep this in mind if you want to try out
any of them!

 If you configured an analyzer in your elasticsearch.yml file, you can also reference
it by name in the analyzer parameter. Additionally, if you’ve created an index with a
custom analyzer similar to the example in listing 5.2, you can still use this analyzer by
name, but instead of using the HTTP endpoint of /_search, you’ll need to specify the
index first. An example using the index named get-together and an analyzer called
myCustomAnalyzer is shown here:

% curl -XPOST 'localhost:9200/get-together/_analyze?analyzer=myCustomAnalyzer'
–d 'share your experience with NoSql & big data technologies'

5.3.2 Combining parts to create an impromptu analyzer

Sometimes you may not want to use a built-in analyzer but instead try out a combina-
tion of tokenizers and token filters—for instance, to see how a particular tokenizer
breaks up a sentence without any other analysis. With the analysis API you can specify
a tokenizer and a list of token filters to be used for analyzing the text. For example, if
you wanted to use the whitespace tokenizer (to split the text on spaces) and then use
the lowercase and reverse token filters, you could do so as follows:

% curl -XPOST 'localhost:9200/
_analyze?tokenizer=whitespace&filters=lowercase,reverse' -d 'share your
experience with NoSql & big data technologies'

The analyzed
tokens: share, your,
experience, with,
nosql, big, data,
and technologies
Licensed to Thomas Snead <n.ordickan@gmail.com>

128 CHAPTER 5 Analyzing your data
You’d get back the following tokens:

erahs, ruoy, ecneirepxe, htiw, lqson, &, gib, atad, seigolonhcet

This tokenizer first tokenized the sentence “share your experience with NoSql & big
data technologies” into the tokens share, your, experience, with, NoSql, &, big, data,
technologies. Next, it lowercased the tokens, and finally, it reversed each token to
get the provided terms.

5.3.3 Analyzing based on a field’s mapping

One more helpful thing about the analysis API once you start creating mappings for
an index is that Elasticsearch allows you to analyze based on a field where the map-
ping has already been created. If you create a mapping with a field description that
looks like this snippet

… other mappings …
"description": {
 "type": "string",
 "analyzer": "myCustomAnalyzer"
}

you can then use the analyzer associated with the field by specifying the field param-
eter with the request:

% curl -XPOST 'localhost:9200/get-together/_analyze?field=description' –d '
share your experience with NoSql & big data technologies'

The custom analyzer will automatically be used because it’s the analyzer associated
with the description field. Keep in mind that in order to use this, you’ll need to spec-
ify an index, because Elasticsearch needs to be able to get the mappings for a particu-
lar field from an index.

 Now that we’ve covered how to test out different analyzers using cURL, we’ll jump
into all the different analyzers that Elasticsearch provides for you out of the box. Keep
in mind that you can always create your own analyzer by combining the different parts
(tokenizers and token filters).

5.3.4 Learning about indexed terms using the terms vectors API

When thinking about the right analyzer, the _analyze endpoint of the previous sec-
tion is a fine method. But if you want to learn more about the terms in a certain docu-
ment, there’s a more effective way than going over all the separate fields. You can use
the endpoint _termvector to get more information about all the terms. Using the
endpoint you can learn about the terms, how often they occur in the document,
the index, and where they occur in the document.

 The basic usage of the _termvector endpoint looks like this:

% curl 'localhost:9200/get-together/group/1/_termvector?pretty=true'
{
 "_index" : "get-together",
 "_type" : "group",
Licensed to Thomas Snead <n.ordickan@gmail.com>

129Analyzing text with the analyze API

d
ea
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "term_vectors" : {
 "description" : {
 "field_statistics" : {
 "sum_doc_freq" : 197,
 "doc_count" : 12,
 "sum_ttf" : 209
 },
 "terms" : {
 "about" : {
 "term_freq" : 1,
 "tokens" : [{
 "position" : 16,
 "start_offset" : 90,
 "end_offset" : 95
 }]
 },
 "and" : {
 "term_freq" : 1,
 "tokens" : [{
 "position" : 13,
 "start_offset" : 75,
 "end_offset" : 78
 }]
 },
 "clojure" : {
 "term_freq" : 2,
 "tokens" : [{
 "position" : 2,
 "start_offset" : 9,
 "end_offset" : 16
 }, {
 "position" : 17,
 "start_offset" : 96,
 "end_offset" : 103
 }]
 },
… More terms omitted
 }
 }
}

There are some things you can configure, one of them being the term statistics; be
aware that this is a heavy operation. The following command shows how to change
this request. Now you request the terms statistics as well and mention the fields you
want statistics for:

% curl 'localhost:9200/get-together/group/1/_termvector?pretty=true' -d '{
 "fields" : ["description","tags"],
 "term_statistics" : true
}'

The field for which the
terms information is
returned

The statistics for the
terms in this field

Sum the
ocuments
ch term in

this field
occurs in.

Number of
documents

that contain
this field

Sum of all term frequencies in
this field; will be more than 0
if a term occurs multiple times
in one document.

Object containing all
the terms in the field
description

The term that belongs
with the provided data

The number of times the
term occurs in the field

Array
containing the

location(s) that
the term can

be found in
the field
Licensed to Thomas Snead <n.ordickan@gmail.com>

130 CHAPTER 5 Analyzing your data
Here’s part of the response. Only one term is shown, and the structure is the same as
the previous code sample:

"about" : {
 "doc_freq" : 2,
 "ttf" : 2,
 "term_freq" : 1,
 "tokens" : [{
 "position" : 16,
 "start_offset" : 90,
 "end_offset" : 95
 }]
 }

By now you’ve learned a lot about what analyzers do and how you can explore the out-
come of analyzers. You’ll keep using the _analyze and _termvector APIs when explor-
ing built-in analyzers in the next section.

5.4 Analyzers, tokenizers, and token filters, oh my!
In this section we’ll discuss the built-in analyzers, tokenizers, and token filters that
Elasticsearch provides. Elasticsearch provides a large number of them, such as lower-
casing, stemming, language-specific, synonyms, and so on, so you have a lot of flexibil-
ity to combine them in different ways to get your desired tokens.

5.4.1 Built-in analyzers

This section provides a rundown of the analyzers
that Elasticsearch comes with out of the box. Remem-
ber that an analyzer consists of an optional charac-
ter filter, a single tokenizer, and zero or more token
filters. Figure 5.2 is a visualization of an analyzer.

 We’ll be referencing tokenizers and token fil-
ters, which we’ll cover in more detail in the follow-
ing sections. With each analyzer, we’ll include an
example of some text that demonstrates what analy-
sis using that analyzer looks like.

STANDARD

The standard analyzer is the default analyzer for text
when no analyzer is specified. It combines sensible
defaults for most European languages by combin-
ing the standard tokenizer, the standard token fil-
ter, the lowercase token filter, and the stop token
filter. There isn’t much to say about the standard
analyzer. We’ll talk about what the standard token-
izer and standard token filter do in sections 5.4.2

The term to present
information on

The number of
documents this
term occurs in

Total occurrences of
this term in the index

Input text

Output tokens

Analyzer

Character filter

Tokenizer

Token filter

Figure 5.2 Analyzer overview
Licensed to Thomas Snead <n.ordickan@gmail.com>

131Analyzers, tokenizers, and token filters, oh my!
and 5.4.3; just keep in mind that if you don’t specify an analyzer for a field, the stan-
dard analyzer will be used.

SIMPLE

The simple analyzer is just that—simple! It uses the lowercase tokenizer, which means
tokens are split at nonletters and automatically lowercased. This analyzer doesn’t work
well for Asian languages that don’t separate words with whitespace, though, so use it
only for European languages.

WHITESPACE

The whitespace analyzer does nothing but split text into tokens around whitespace—
very simple!

STOP

The stop analyzer behaves like the simple analyzer but additionally filters out stop-
words from the token stream.

KEYWORD

The keyword analyzer takes the entire field and generates a single token on it. Keep in
mind that rather than using the keyword tokenizer in your mappings, it’s better to set
the index setting to not_analyzed.

PATTERN

The pattern analyzer allows you to specify a pattern for tokens to be broken apart. But
because the pattern would have to be specified regardless, it often makes more sense
to use a custom analyzer and combine the existing pattern tokenizer with any needed
token filters.

LANGUAGE AND MULTILINGUAL

Elasticsearch supports a wide variety of language-specific analyzers out of the box.
There are analyzers for arabic, armenian, basque, brazilian, bulgarian, catalan, chi-
nese, cjk, czech, danish, dutch, english, finnish, french, galician, german, greek, irish,
hindi, hungarian, indonesian, italian, norwegian, persian, portuguese, romanian, rus-
sian, sorani, spanish, swedish, turkish, and thai. You can specify the language-specific
analyzer by using one of those names, but make sure you use the lowercase name! If
you want to analyze a language not included in this list, there may be a plugin for it
as well.

SNOWBALL

The snowball analyzer uses the standard tokenizer and token filter (like the standard
analyzer), with the lowercase token filter and the stop filter; it also stems the text using
the snowball stemmer. Don’t worry if you aren’t sure what stemming is; we’ll discuss it
in more detail near the end of this chapter.

 Before you can fully comprehend these analyzers, you need to understand the
parts that make up an analyzer, so we’ll now discuss the tokenizers that Elasticsearch
supports.
Licensed to Thomas Snead <n.ordickan@gmail.com>

132 CHAPTER 5 Analyzing your data
5.4.2 Tokenization

As you may recall from earlier in the chapter, tokenization is taking a string of text
and breaking it into smaller chunks called tokens. Just as Elasticsearch includes ana-
lyzers out of the box, it also includes a number of built-in tokenizers.

STANDARD TOKENIZER

The standard tokenizer is a grammar-based tokenizer that’s good for most European
languages; it also handles segmenting Unicode text but with a default max token
length of 255. It also removes punctuation like commas and periods:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' -d 'I have,
potatoes.'

The tokens are I, have, and potatoes.

KEYWORD

Keyword is a simple tokenizer that takes the entire text and provides it as a single token
to the token filters. This can be useful when you only want to apply token filters with-
out doing any kind of tokenization:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=keyword' -d 'Hi, there.'

The tokens are Hi and there.

LETTER

The letter tokenizer takes the text and divides it into tokens at things that are not let-
ters. For example, with the sentence “Hi, there.” the tokens would be Hi and there
because the comma, space, and period are all nonletters:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=letter' -d 'Hi, there.'

The tokens are Hi and there.

LOWERCASE

The lowercase tokenizer combines both the regular letter tokenizer’s action as well as
the action of the lowercase token filter (which, as you can imagine, lowercases the
entire token). The main reason to do this with a single tokenizer is that you gain bet-
ter performance by doing both at once:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=letter' -d 'Hi, there.'

The tokens are hi and there.

WHITESPACE

The whitespace tokenizer separates tokens by whitespace: space, tab, line break, and so
on. Note that this tokenizer doesn’t remove any kind of punctuation, so tokenizing
the text “Hi, there.” results in two tokens: Hi and there:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=whitespace' -d 'Hi, there.'

The tokens are Hi and there.
Licensed to Thomas Snead <n.ordickan@gmail.com>

133Analyzers, tokenizers, and token filters, oh my!
PATTERN

The pattern tokenizer allows you to specify an arbitrary pattern where text should be
split into tokens. The pattern that’s specified should match the spacing characters;
for example, if you wanted to split text on any two-digit number, you could create a
custom analyzer that breaks tokens at wherever the text .-. occurs, which would
look like this:

% curl -XPOST 'localhost:9200/pattern' -d '{
 "settings": {
 "index": {
 "analysis": {
 "tokenizer": {
 "pattern1": {
 "type": "pattern",
 "pattern": "\\.-\\."
 }
 }
 }
 }
 }
}'

% curl -XPOST 'localhost:9200/pattern/_analyze?tokenizer=pattern1' \
-d 'breaking.-.some.-.text'

The tokens are breaking, some, and text.

UAX URL EMAIL

The standard tokenizer is pretty good at figuring out English words, but these days
there’s quite a bit of text that ends up containing website addresses and email
addresses. The standard analyzer breaks these apart in places where you may not
intend; for example, if you take the example email address john.smith@example.com
and analyze it with the standard tokenizer, it gets split into multiple tokens:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' \
-d 'john.smith@example.com'

The tokens are john.smith and example.com.
 Here you see it’s been split into the john.smith part and the example.com part. It

also splits URLs into separate parts:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' \
-d 'http://example.com?q=foo'

The tokens are http, example.com, q, and foo.
 The UAX URL email tokenizer will preserve both emails and URLs as single tokens:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=uax_url_email' \
-d 'john.smith@example.com http://example.com?q=bar'
{
 "tokens" : [{
 "token" : "john.smith@example.com",
 "start_offset" : 1,
Licensed to Thomas Snead <n.ordickan@gmail.com>

134 CHAPTER 5 Analyzing your data
 "end_offset" : 23,
 "type" : "<EMAIL>",
 "position" : 1
 }, {
 "token" : "http://example.com?q=bar",
 "start_offset" : 24,
 "end_offset" : 48,
 "type" : "<URL>",
 "position" : 2
 }]
}

This can be extremely helpful when you want to search for exact URLs or email
addresses in a text field. In this case we included the response to make it visible that
the type of the fields is also set to email and url.

PATH HIERARCHY

The path hierarchy tokenizer allows you to index filesystem paths in a way where search-
ing for files sharing the same path will return results. For example, let’s assume you
have a filename you want to index that looks like /usr/local/var/log/elasticsearch.log.
Here’s what the path hierarchy tokenizer tokenizes this into:

% curl 'localhost:9200/_analyze?tokenizer=path_hierarchy' \
-d '/usr/local/var/log/elasticsearch.log'

The tokens are /usr, /usr/local, /usr/local/var, /usr/local/var/log, and /usr/
local/var/log/elasticsearch.log.

 This means a user querying for a file sharing the same path hierarchy (hence the
name!) as this file will find a match. Querying for “/usr/local/var/log/es.log” will still
share the same tokens as “/usr/local/var/log/elasticsearch.log,” so it can still be
returned as a result.

 Now that we’ve touched on the different ways of splitting a block of text into differ-
ent tokens, let’s talk about what you can do with each of those tokens.

5.4.3 Token filters

There are a lot of token filters included in Elasticsearch; we’ll cover only the most
popular ones in this section because enumerating all of them would make this section
much too verbose. Like figure 5.1, figure 5.3 provides an example of three token fil-
ters: the lowercase filter, the stopword filter, and the synonym filter.

STANDARD

Don’t be fooled into thinking that the standard token filter performs complex calcula-
tion; it actually does nothing at all! In the older versions of Lucene it used to remove
the “’s” characters from the end of words, as well as some extraneous period charac-
ters, but these are now handled by some of the other token filters and tokenizers.

The output is shown;
notice the type of
the fields. There’s a
default maximum of
255 chars.
Licensed to Thomas Snead <n.ordickan@gmail.com>

135Analyzers, tokenizers, and token filters, oh my!
LOWERCASE

The lowercase token filter does just that: it lowercases any token that gets passed through
it. This should be simple enough to understand:

% curl 'localhost:9200/_analyze?tokenizer=keyword&filters=lowercase' -d 'HI
THERE!'

The token is hi there!.

LENGTH

The length token filter removes words that fall outside a boundary for the minimum
and maximum length of the token. For example, if you set the min setting to 2 and the
max setting to 8, any token shorter than two characters will be removed and any token
longer than eight characters will be removed:

% curl -XPUT 'localhost:9200/length' -d '{
 "settings": {
 "index": {
 "analysis": {
 "filter": {
 "my-length-filter": {
 "type": "length",
 "max": 8,
 "min": 2
 }

share your experience with NoSql

NoSql nosql

big technologies

technologies technologies tools

tools

and

and

data

share your experience with nosql

big technologiesdata

Token filter

chain

Lowercase

Stop words

Synonyms:

technologies,

tools

Figure 5.3 Token filters accept tokens from tokenizer and prep data for indexing.
Licensed to Thomas Snead <n.ordickan@gmail.com>

136 CHAPTER 5 Analyzing your data
 }
 }
 }
 }
}'

Now you have the index with the configured custom filter called my-length-filter.
In the next request you use this filter to filter out all tokens smaller than 2 or bigger
than 8.

% curl 'localhost:9200/length/_analyze?tokenizer=standard&filters=my-length-
filter&pretty=true' -d 'a small word and a longerword'

The tokens are small, word, and and.

STOP

The stop token filter removes stopwords from the token stream. For English, this
means all tokens that fall into this list are entirely removed. You can also specify a list
of words to be removed for this filter.

 What are the stopwords? Here’s the default list of stopwords for the English
language:

a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their,
then, there, these, they, this, to, was, will, with

To specify the list of stopwords, you can create a custom token filter with a list of words
like this:

% curl -XPOST 'localhost:9200/stopwords' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "stop1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-stop-filter"]
 }
 },
 "filter": {
 "my-stop-filter": {
 "type": "stop",
 "stopwords": ["the", "a", "an"]
 }
 }
 }
 }
 }
}'

To read the list of stopwords from a file, using either a path relative to the configura-
tion location or an absolute path, each word should be on a new line and the file must
Licensed to Thomas Snead <n.ordickan@gmail.com>

137Analyzers, tokenizers, and token filters, oh my!
be UTF-8 encoded. You’d use the following to use the stop word filter configured with
a file:

% curl -XPOST 'localhost:9200/stopwords' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "stop1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-stop-filter"]
 }
 },
 "filter": {
 "my-stop-filter": {
 "type": "stop",
 "stopwords_path": "config/stopwords.txt"
 }
 }
 }
 }
 }
}'

A final option would be to use a predefined language list of stop words. In that case
the value for stopwords could be “_dutch_”, or any of the other predefined languages.

TRUNCATE, TRIM, AND LIMIT TOKEN COUNT

The next three token filters deal with limiting the token stream in some way:

■ The truncate token filter allows you to truncate tokens over a certain length by
settings the length parameter in the custom configuration; by default it trun-
cates to 10 characters.

■ The trim token filter removes all of the whitespace around a token; for example,
the token “ foo ” will be transformed into the token foo.

■ The limit token count token filter limits the maximum number of tokens that a
particular field can contain. For example, if you create a customized token
count filter with a limit of 8, only the first eight tokens from the stream will be
indexed. This is set using the max_token_count parameter, which defaults to 1
(only a single token will be indexed).

REVERSE

The reverse token filter allows you to take a stream of tokens and reverse each one.
This is particularly useful if you’re using the edge ngram filter or want to do leading
wildcard searches. Instead of doing a leading wildcard search for “*bar,” which is very
slow for Lucene, you can search using “rab*” on a field that has been reversed, result-
ing in a much faster query. The following listing shows an example of reversing a
stream of tokens.
Licensed to Thomas Snead <n.ordickan@gmail.com>

138 CHAPTER 5 Analyzing your data
% curl 'localhost:9200/_analyze?tokenizer=standard&filters=reverse' \
-d 'Reverse token filter'

{
 "tokens" : [{
 "token" : "esreveR",
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "nekot",
 "start_offset" : 8,
 "end_offset" : 13,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "retlif",
 "start_offset" : 14,
 "end_offset" : 20,
 "type" : "<ALPHANUM>",
 "position" : 3
 }]
}

You can see that each token has been reversed, but the order of the tokens has
been preserved.

UNIQUE

The unique token filter keeps only unique tokens; it keeps the metadata of the first
token that matches, removing all future occurrences of it:

% curl 'localhost:9200/_analyze?tokenizer=standard&filters=unique' \
-d 'foo bar foo bar baz'

{
 "tokens" : [{
 "token" : "foo",
 "start_offset" : 0,
 "end_offset" : 3,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "bar",
 "start_offset" : 4,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "baz",
 "start_offset" : 16,
 "end_offset" : 19,
 "type" : "<ALPHANUM>",
 "position" : 3

Listing 5.4 Example of the reverse token filter

The word “Reverse”
that has been reversed

The word “token” that
has been reversed

The word “filter” that
has been reversed
Licensed to Thomas Snead <n.ordickan@gmail.com>

139Analyzers, tokenizers, and token filters, oh my!
 }]
}

ASCII FOLDING

The ascii folding token filter converts Unicode characters that aren’t part of the regu-
lar ASCII character set into the ASCII equivalent, if one exists for the character. For
example, you can convert the Unicode “ü” into an ASCII “u” as shown here:

% curl 'localhost:9200/_analyze?tokenizer=standard&filters=asciifolding' -d
'ünicode'

{
 "tokens" : [{
 "token" : "unicode",
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 1
 }]
}

SYNONYM

The synonym token filter replaces synonyms for words in the token stream at the same
offset as the original tokens. For example, let’s take the text “I own that automobile”
and the synonym for “automobile,” “car.” Without the synonym token filter you’d pro-
duce the following tokens:

% curl 'localhost:9200/_analyze?analyzer=standard' -d'I own that automobile'
{
 "tokens" : [{
 "token" : "i",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "own",
 "start_offset" : 2,
 "end_offset" : 5,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "that",
 "start_offset" : 6,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "automobile",
 "start_offset" : 11,
 "end_offset" : 21,
 "type" : "<ALPHANUM>",
 "position" : 4
 }]
}

Licensed to Thomas Snead <n.ordickan@gmail.com>

140 CHAPTER 5 Analyzing your data
You can define a custom analyzer that specifies a synonym for “automobile” like this:

% curl -XPOST 'localhost:9200/syn-test' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "synonyms": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-synonym-filter"]
 }
 },
 "filter": {
 "my-synonym-filter": {
 "type": "synonym",
 "expand": true,
 "synonyms": ["automobile=>car"]
 }
 }
 }
 }
 }
}'

When you use it, you can see that the automobile token has been replaced by the car
token in the results:

% curl 'localhost:9200/syn-test/_analyze?analyzer=synonyms' -d'I own that
automobile'
{
 "tokens" : [{
 "token" : "i",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "own",
 "start_offset" : 2,
 "end_offset" : 5,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "that",
 "start_offset" : 6,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "car",
 "start_offset" : 11,
 "end_offset" : 21,
 "type" : "SYNONYM",
 "position" : 4

Notice that the start_offset
and end_offset are the ones
from automobile.
Licensed to Thomas Snead <n.ordickan@gmail.com>

141Ngrams, edge ngrams, and shingles
 }]
}

In the example you configure the synonym filter to replace the token, but it’s also pos-
sible to add the synonym token to the tokens using the filter. In that case you should
replace automobile=>car with automobile,car.

5.5 Ngrams, edge ngrams, and shingles
Ngrams and edge ngrams are two of the more unique ways of tokenizing text in Elas-
ticsearch. Ngrams are a way of splitting a token into multiple subtokens for each part
of a word. Both the ngram and edge ngram filters allow you to specify a min_gram as
well as a max_gram setting. These settings control the size of the tokens that the word is
being split into. This might be confusing, so let’s look at an example. Assuming you
want to analyze the word “spaghetti” with the ngram analyzer, let’s start with the sim-
plest case, 1-grams (also known as unigrams).

5.5.1 1-grams

The 1-grams for “spaghetti” are s, p, a, g, h, e, t, t, i. The string has been split
into smaller tokens according to the size of the ngram. In this case, each item is a sin-
gle character because we’re talking about unigrams.

5.5.2 Bigrams

If you were to split the string into bigrams (which means a size of two), you’d get the
following smaller tokens: sp, pa, ag, gh, he, et, tt, ti.

5.5.3 Trigrams

Again, if you were to use a size of three (which are called trigrams), you’d get the
tokens spa, pag, agh, ghe, het, ett, tti.

5.5.4 Setting min_gram and max_gram

When using this analyzer, you need to set two different sizes: one specifies the smallest
ngrams you want to generate (the min_gram setting), and the other specifies the larg-
est ngrams you want to generate. Using the previous example, if you specified a
min_gram of 2 and a max_gram of 3, you’d get the combined tokens from our two pre-
vious examples:

sp, spa, pa, pag, ag, agh, gh, ghe, he, het, et, ett, tt, tti, ti

If you were to set the min_gram setting to 1 and leave max_gram at 3, you’d get even
more tokens, starting with s, sp, spa, p, pa, pag, a,....

 Analyzing text in this way has an interesting advantage. When you query for text,
your query is going to be split into text the same way, so say you’re looking for the
incorrectly spelled word “spaghety.” One way of searching for this is to do a fuzzy query,
which allows you to specify an edit distance for words to check matches. But you can
Licensed to Thomas Snead <n.ordickan@gmail.com>

142 CHAPTER 5 Analyzing your data
get a similar sort of behavior by using ngrams. Let’s compare the bigrams generated
for the original word (“spaghetti”) with the misspelled one (“spaghety”):

■ Bigrams for “spaghetti”: sp, pa, ag, gh, he, et, tt, ti
■ Bigrams for “spaghety”: sp, pa, ag, gh, he, et, ty

You can see that six of the tokens overlap, so words with “spaghetti” in them would still
be matched when the query contained “spaghety.” Keep in mind that this means that
more words that you may not intend match the original “spaghetti” word, so always
make sure to test your query relevancy!

 Another useful thing ngrams do is allow you to analyze text when you don’t know
the language beforehand or when you have languages that combine words in a differ-
ent manner than other European languages. This also has an advantage in being able
to handle multiple languages with a single analyzer, rather than having to specify dif-
ferent analyzers or using different fields for documents in different languages.

5.5.5 Edge ngrams
A variant to the regular ngram splitting called edge ngrams builds up ngrams only
from the front edge. In the “spaghetti” example, if you set the min_gram setting to 2
and the max_gram setting to 6, you’d get the following tokens:

sp, spa, spag, spagh, spaghe

You can see that each token is built from the edge. This can be helpful for searching
for words sharing the same prefix without actually performing a prefix query. If you
need to build ngrams from the back of a word, you can use the side property to take
the edge from the back instead of the default front.

5.5.6 Ngram settings
Ngrams turn out to be a great way to analyze text when you don’t know what the lan-
guage is because they can analyze languages that don’t have spaces between words. An
example of configuring an edge ngram analyzer with min and max grams would look
like the following listing.

% curl -XPOST 'localhost:9200/ng' -d'{
 "settings": {
 "number_of_shards": 1,
 "number_of_replicas": 0,
 "index": {
 "analysis": {
 "analyzer": {
 "ng1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["reverse", "ngf1", "reverse"]
 }
 },

Listing 5.5 Ngram analysis

Configures an
analyzer for reversing,
edge ngrams, and
reversing again
Licensed to Thomas Snead <n.ordickan@gmail.com>

143Ngrams, edge ngrams, and shingles
 "filter": {
 "ngf1": {
 "type": "edgeNgram",
 "min_gram": 2,
 "max_gram": 6
 }
 }
 }
 }
 }
}'
% curl -XPOST 'localhost:9200/ng/_analyze?analyzer=ng1' -d'spaghetti'
{
 "tokens" : [{
 "token" : "ti",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "tti",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "etti",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "hetti",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "ghetti",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }]
}

5.5.7 Shingles
Along the same lines as ngrams and edge ngrams, there is a filter known as the
shingles filter (no, not the disease!). The shingles token filter is basically ngrams at
the token level instead of the character level.

 Think of our favorite word, “spaghetti.” Using ngrams with a min and max set to 1
and 3, Elasticsearch will generate the tokens s, sp, spa, p, pa, pag, a, ag, and so on. A
shingle filter does this at the token level instead, so if you had the text “foo bar baz”

Sets the minimum
and maximum sizes
for the edge ngram
token filter

The analyzed
tokens from the
right side of the
word “spaghetti”
Licensed to Thomas Snead <n.ordickan@gmail.com>

144 CHAPTER 5 Analyzing your data
and used, again, a min_shingle_size of 2 and a max_shingle_size of 3, you’d gener-
ate the following tokens:

foo, foo bar, foo bar baz, bar, bar baz, baz

Why is the single-token output still included? This is because by default the shingles
filter includes the original tokens, so the original tokenizer produces the tokens foo,
bar, and baz, which are then passed to the shingles token filter, which generates the
tokens foo bar, foo bar baz, and bar baz. All of these tokens are combined to form
the final token stream. You can disable this behavior by setting the output_unigrams
option to false.

 The next listing shows an example of a shingles token filter; note that the
min_shingle_size option must be larger than or equal to 2.

% curl -XPOST 'localhost:9200/shingle' -d '{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "shingle1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["shingle-filter"]
 }
 },
 "filter": {
 "shingle-filter": {
 "type": "shingle",
 "min_shingle_size": 2,
 "max_shingle_size": 3,
 "output_unigrams": false
 }
 }
 }
 }
 }
}'
% curl -XPOST 'localhost:9200/shingle/_analyze?analyzer=shingle1' -d 'foo bar

baz'
{
 "tokens" : [{
 "token" : "foo bar",
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "shingle",
 "position" : 1
 }, {
 "token" : "foo bar baz",
 "start_offset" : 0,
 "end_offset" : 11,

Listing 5.6 Shingle token filter example

Specifies the
minimum and
maximum shingle size

Tells the shingle token
filter not to keep the
original single tokens

The analyzed
shingle tokens
Licensed to Thomas Snead <n.ordickan@gmail.com>

145Stemming
 "type" : "shingle",
 "position" : 1
 }, {
 "token" : "bar baz",
 "start_offset" : 4,
 "end_offset" : 11,
 "type" : "shingle",
 "position" : 2
 }]
}

5.6 Stemming
Stemming is the act of reducing a word to its base or root word. This is extremely handy
when searching because it means you’re able to match things like the plural of a word
as well as words sharing the root or stem of the word (hence the name stemming). Let’s
look at a concrete example. If the word is “administrations,” the root of the word is
“administr.” This allows you to match all of the other roots for this word, like “admin-
istrator,” “administration,” and “administrate.” Stemming is a powerful way of making
your searches more flexible than rigid exact matching.

5.6.1 Algorithmic stemming

Algorithmic stemming is applied by using a formula or set of rules for each token in
order to stem it. Elasticsearch currently offers three different algorithmic stemmers:
the snowball filter, the porter stem filter, and the kstem filter. They behave in almost
the same way but have some slight differences in how aggressive they are with regard
to stemming. By aggressive we mean that the more aggressive stemmers chop off more
of the word than the less aggressive stemmers. Table 5.1 shows a comparison of the dif-
ferent algorithmic stemmers.

To see how a stemmer stems a word, you can specify it as a token filter with the ana-
lyze API:

curl -XPOST 'localhost:9200/_analyze?tokenizer=standard&filters=kstem' -d
'administrators'

Use either snowball, porter_stem, or kstem for the filter to test it out.
 As an alternative to algorithmic stemming, you can stem using a dictionary, which

is a one-to-one mapping of the original word to its stem.

Table 5.1 Comparing stemming of snowball, porter stem, and kstem

stemmer administrations administrators Administrate

snowball administr administr Administer

porter_stem administr administr Administer

kstem administration administrator Administrate

The analyzed
shingle tokens
Licensed to Thomas Snead <n.ordickan@gmail.com>

146 CHAPTER 5 Analyzing your data
5.6.2 Stemming with dictionaries

Sometimes algorithmic stemmers can stem words in a strange way because they don’t
know any of the underlying language. Because of this, there’s a more accurate way to
stem words that uses a dictionary of words. In Elasticsearch you can use the hunspell
token filter, combined with a dictionary, to handle the stemming. Because of this, the
quality of the stemming is directly related to the quality of the dictionary that you use.
The stemmer will only be able to stem words it has in the dictionary.

 When creating a hunspell analyzer, the dictionary files should be in a directory
called hunspell in the same directory as elasticsearch.yml. Inside the hunspell direc-
tory dictionary for each language should be a folder named after its associated locale.
Here’s how to create an index with a hunspell analyzer:

% curl -XPOST 'localhost:9200/hspell' -d'{
 "analysis" : {
 "analyzer" : {
 "hunAnalyzer" : {
 "tokenizer" : "standard",
 "filter" : ["lowercase", "hunFilter"]
 }
 },
 "filter" : {
 "hunFilter" : {
 "type" : "hunspell",
 "locale" : "en_US",
 "dedup" : true
 }
 }
 }
}

The hunspell dictionary files should be inside <es-config-dir>/hunspell/en_US (replace
<es-config-dir> with the location of your Elasticsearch configuration directory). The
en_US folder is used because this hunspell analyzer is for the English language and
corresponds to the locale setting in the previous example. You can also change
where Elasticsearch looks for hunspell dictionaries by setting the indices.analysis
.hunspell.dictionary.location setting in elasticsearch.yml. To test that your ana-
lyzer is working correctly, you can use the analyze API again:

% curl -XPOST 'localhost:9200/hspell/_analyze?analyzer=hunAnalyzer' -
d'administrations'

5.6.3 Overriding the stemming from a token filter

Sometimes you may not want to have words stemmed because either the stemmer
treats them incorrectly or you want to do exact matches on a particular word. You can
accomplish this by placing a keyword marker token filter before the stemming filter in
the chain of token filters. In this keyword marker token filter, you can specify either a
list of words or a file with a list of words that shouldn’t be stemmed.
Licensed to Thomas Snead <n.ordickan@gmail.com>

147Summary
 Other than preventing a word from being stemmed, it may be useful for you to
manually specify a list of rules to be used for stemming words. You can achieve this
with the stemmer override token filter, which allows you to specify rules like cats =>
cat to be applied. If the stemmer override finds a rule and applies it to a word, that
word can’t be stemmed by any other stemmer.

 Keep in mind that both of these token filters must be placed before any other
stemming filters because they’ll protect the term from having stemming applied by
any other token filters later in the chain.

5.7 Summary
You should now understand how Elasticsearch breaks apart a field’s text before index-
ing or querying. Text is broken into different tokens, and then filters are applied to
create, delete, or modify these tokens:

■ Analysis is the process of making tokens out of the text in fields of your docu-
ments. The same process is applied to your search string in queries such as the
match query. A document matches when its tokens match tokens from the
search string.

■ Each field is assigned an analyzer through the mapping. That analyzer can be
defined in your Elasticsearch configuration or index settings, or it could be a
default analyzer.

■ Analyzers are processing chains made up by a tokenizer, which can be preceded
by one or more char filters and succeeded by one or more token filters.

■ Char filters are used to process strings before passing them to the tokenizer. For
example, you can use the mapping char filter to change “&” to “and.”

■ Tokenizers are used for breaking strings into multiple tokens. For example, the
whitespace tokenizer can be used to make a token out of each word delimited
by a space.

■ Token filters are used to process tokens coming from the tokenizer. For exam-
ple, you can use stemming to reduce a word to its root and make your searches
work across both plural and singular versions of that word.

■ Ngram token filters make tokens out of portions of words. For example, you
can make a token out of every two consecutive letters. This is useful when you
want your searches to work even if the search string contains typos.

■ Edge ngrams are like ngrams, but they work only from the beginning or the end
of the word. For example, you can take “event” and make e, ev, and eve tokens.

■ Shingles are like ngrams at the phrase level. For example, you can generate
terms out of every two consecutive words from a phrase. This is useful when you
want to boost the relevance of multiple-word matches, like in the short descrip-
tion of a product. We’ll talk more about relevancy in the next chapter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Searching with relevancy
In the world of free text, being able match a document to a query is a feature
touted by many different storage and search engines. What really makes an Elastic-
search query different from doing a SELECT * FROM users WHERE name LIKE 'bob%'
is the ability to assign a relevancy, also known as a score, to a document. From this
score you know how relevant the document is to the original query.

This chapter covers
■ How scoring works inside Lucene and

Elasticsearch
■ Boosting the score of a particular query or field
■ Understanding term frequency, inverse

document frequency, and relevancy scores with
the explain API

■ Reducing the impact of scoring by rescoring a
subset of documents

■ Gaining ultimate power over scoring using the
function_score query

■ The field data cache and how it affects
Elasticsearch instances
148

Licensed to Thomas Snead <n.ordickan@gmail.com>

149How scoring works in Elasticsearch
 When users type a query into a search box on a website, they expect to find not
only results matching their query but also those results ranked based on how closely
they match the query’s criteria. As it turns out, Elasticsearch is quite flexible when it
comes to determining the relevancy of a document, and there are a lot of ways to cus-
tomize your searches to provide more relevant results.

 Don’t fret if you find yourself in a position where you don’t particularly care about
how well a document matches a query but only that it does or does not match. This
chapter also deals with some flexible ways to filter out documents, and it’s important
to understand the field data cache, which is the in-memory cache where Elasticsearch
stores the values of the fields from documents in the index when it comes to sorting,
scripting, or aggregating on the values inside these fields.

 We’ll start the chapter by talking about the scoring Elasticsearch does, as well as an
alternative to the default scoring algorithm, move on to affecting the scoring directly
using boosting, and then talk about understanding how the score was computed using
the explain API. After that we’ll cover how to reduce the impact of scoring using query
rescoring, extending queries to have ultimate control over the scoring with the func-
tion score query, and custom sorting using a script. Finally, we’ll talk about the in-
memory field data cache, how it affects and impacts your queries, and an alternative
to it called doc values.

 Before we get to the field data cache, though, let’s start at the beginning with how
Elasticsearch calculates the score for documents.

6.1 How scoring works in Elasticsearch
Although it may make sense to first think about documents matching queries in a
binary sense, meaning either “Yes, it matches” or “No, it doesn’t match,” it makes
much more sense to think about documents matching in a relevancy sense. Whereas
before you could speak of a document either matching or not matching (the binary
method), it’s more accurate to be able to say that document A is a better match for a
query than document B. For example, when you use your favorite search engine to
search for “elasticsearch,” it’s not enough to say that a particular page contains the
term and therefore matches; instead, you want the results to be ranked according to
the best and most relevant results.

 The process of determining how relevant a document is to a query is called scoring,
and although it isn’t necessary to understand exactly how Elasticsearch calculates the
score of a document in order to use Elasticsearch, it’s quite useful.

6.1.1 How scoring documents works

Scoring in Lucene (and by extension, Elasticsearch) is a formula that takes the docu-
ment in question and uses a few different pieces to determine the score for that docu-
ment. We’ll first cover each piece and then combine them in the formula to better
explain the overall scoring. As we mentioned previously, we want documents that are
Licensed to Thomas Snead <n.ordickan@gmail.com>

150 CHAPTER 6 Searching with relevancy
more relevant to be returned first, and in Lucene and Elasticsearch this relevancy is
called the score.

 To begin calculating the score, Elasticsearch uses the frequency of the term being
searched for as well as how common the term is to influence the score. A short expla-
nation is that the more times a term occurs in a document, the more relevant it is. But
the more times the term appears across all the documents, the less relevant that term
is. This is called TF-IDF (TF = term frequency, IDF = inverse document frequency), and
we’ll talk about each of these types of frequency in more detail now.

6.1.2 Term frequency

The first way to think of scoring a document is to look at how often a term occurs in
the text. For example, if you were searching for get-togethers in your area that are
about Elasticsearch, you would want the groups that mention Elasticsearch more fre-
quently to show up first. Consider the following text snippets, shown in figure 6.1.

The first sentence mentions Elasticsearch a single time, and the second mentions Elas-
ticsearch twice, so a document containing the second sentence should have a higher
score than a document containing the first. If we were to speak in absolute numbers,
the first sentence would have a term frequency (TF) of 1, and the second sentence
would have a term frequency of 2.

6.1.3 Inverse document frequency

Slightly more complicated than the term frequency for a document is the inverse document
frequency (IDF). What this fancy-sounding description means is that a token (usually a
word, but not always) is less important the more times it occurs across all of the docu-
ments in the index. This is easiest to explain with a few examples. Consider the three
documents shown in figure 6.2.

“We will discuss at the next Big Data group.”Elasticsearch

“Tuesday the team will gather to answer questions about .”Elasticsearch Elasticsearch

Figure 6.1 Term frequency is how many times a term appears in a document.

“We use Elasticsearch to power search for our website.”the

“ scoring of documents is calculated by scoring formula.”The the

“ developers like Elasticsearch so far.”The

Figure 6.2 Inverse document frequency checks to see if a term
occurs in a document, not how often it occurs.
Licensed to Thomas Snead <n.ordickan@gmail.com>

151How scoring works in Elasticsearch
In the three documents in the figure, note the following:

■ The term “Elasticsearch” has a document frequency of 2 (because it occurs in
two documents). The inverse part of the document frequency comes from
the score being multiplied by 1/DF, where DF is the document frequency of the
term. This means that because the term has a higher document frequency, its
weight decreases.

■ The term “the” has a document frequency of 3 because it occurs in all three
documents. Note that the frequency of “the” is still 3, even though “the” occurs
twice in the last document, because the inverse document frequency only
checks for a term occurring in the document, not how often it occurs in the
document; that’s the job of the term frequency!

Inverse document frequency is an important factor in balancing out the frequency of
a term. For instance, consider a user who searches for the term “the score”; the word
the is likely to be in almost all regular English text, so if it were not balanced out, the
frequency of it would totally overwhelm the frequency of the word score. The IDF bal-
ances the relevancy impact of common words like the, so the actual relevancy score
gives a more accurate sense of the query’s terms.

 Once the TF and the IDF have been calculated, you’re ready to calculate the score
of a document using the TF-IDF formula.

6.1.4 Lucene’s scoring formula

Lucene’s default scoring formula, known as TF-IDF, as discussed in the previous sec-
tion, is based on both the term frequency and the inverse document frequency of a
term. First let’s look at the formula, shown in figure 6.3, and then we’ll tackle each
part individually.

Reading this in human English, we would say “The score for a given query q and doc-
ument d is the sum (for each term t in the query) of the square root of the term fre-
quency of the term in document d, times the inverse document frequency of the term
squared, times the normalization factor for the field in the document, times the boost
for the term.”

 Whew, that’s a mouthful! Don’t worry; you don’t need to have this formula memo-
rized to use Elasticsearch. We’re providing it here so you can understand how the for-
mula is computed. The important part is to understand how the term frequency and

Figure 6.3 Lucene’s scoring formula for a score given a query and
document
Licensed to Thomas Snead <n.ordickan@gmail.com>

152 CHAPTER 6 Searching with relevancy
the inverse document frequency of a term affect the score of the document and how
they’re integral in determining the score for a document in an Elasticsearch index.

 The higher the term frequency, the higher the score; similarly, the inverse docu-
ment frequency is higher the rarer a term is in the index. Although we’re now fin-
ished with TF-IDF, we’re not finished with the default scoring function of Lucene. Two
things are missing: the coordination factor and the query normalization. The coordi-
nation factor takes into account how many documents were searched and how many
terms were found. The query norm is an attempt to make the results of queries com-
parable. It turns out that this is difficult, and in reality you shouldn’t compare scores
among different queries. This default scoring method is a combination of the TF-IDF
and the vector space model.

 If you’re interested in learning more about this, we recommend checking out the
Javadocs for the org.apache.lucene.search.similarities.TFIDFSimilarity Java
class in the Lucene documentation.

6.2 Other scoring methods
Although the practical scoring model from the previous section, a combination of
TF-IDF and the vector space model, is arguably the most popular scoring mechanism
for Elasticsearch and Lucene, that doesn’t mean it’s the only model. From now on
we’ll call the default scoring model TF-IDF, though we mean the practical scoring
model based on TF-IDF. Other models include the following:

■ Okapi BM25
■ Divergence from randomness, or DFR similarity
■ Information based, or IB similarity
■ LM Dirichlet similarity
■ LM Jelinek Mercer similarity

We’ll briefly cover one of the most popular alternative options here (BM25) and how
to configure Elasticsearch to use it. When we talk about scoring methods, we’re talk-
ing about changing the similarity module inside Elasticsearch.

 Before we talk about the alternate scoring method to TF-IDF (known as BM25, a
probabilistic scoring framework), let’s talk about how to configure Elasticsearch to use
it. There are two different ways to specify the similarity for a field; the first is to change
the similarity parameter in a field’s mapping, as shown in the following listing.

{
 "mappings": {
 "get-together": {
 "properties": {
 "title": {
 "type": "string",
 "similarity": "BM25"
 }

Listing 6.1 Changing the similarity parameter in a field’s mapping

Similarity to use for
this field; in this
case, BM25
Licensed to Thomas Snead <n.ordickan@gmail.com>

153Other scoring methods
 }
 }
 }
}

The second way to configure Elasticsearch to use an alternate scoring method is an
extension of specifying it in the field’s mapping. The similarity is defined in the set-
tings, similarly to how an analyzer is, and then referenced in the mappings for a field
by name. This approach allows you to configure the settings for a similarity algorithm.
The next listing shows an example of configuring advanced settings for the BM25 sim-
ilarity and using that scoring algorithm for a field in the mappings.

curl -XPOST 'localhost:9200/myindex' -d'{
 "settings": {
 "index": {
 "analysis": {
 ...
 },
 "similarity": {
 "my_custom_similarity": {
 "type": "BM25",
 "k1": 1.2,
 "b": 0.75,
 "discount_overlaps": false
 }
 }
 }
 },
 "mappings": {
 "mytype": {
 "properties": {
 "title": {
 "type": "string",
 "similarity": "my_custom_similarity"
 }
 }
 }
 }
}'

Additionally, if you’ve decided you want to always use a particular scoring method, you
can configure it globally by adding the following setting to your elasticsearch.yml con-
figuration file:

index.similarity.default.type: BM25

Great! Now that you’ve seen how to specify an alternative similarity, let’s talk about
this alternate similarity and how it differs from TF-IDF.

Listing 6.2 Configuring advanced settings for BM25 similarity

The name of the
custom similarity

The similarity type;
BM25 in this case

Configuring the similarity
variables, k1 and b, and turning
off overlap discounting in this case

Using the custom
similarity for a field
Licensed to Thomas Snead <n.ordickan@gmail.com>

154 CHAPTER 6 Searching with relevancy
6.2.1 Okapi BM25

Okapi BM25 is probably the second most popular scoring method behind TF-IDF for
Lucene and is a probabilistic relevance algorithm, which means the score can be
thought of as the probability that a given document matches the query. BM25 is also
reputed to be better for shorter fields, though you should always test to ensure it
remains true for your dataset! BM25 maps each document into an array of values cor-
responding to each term in the dictionary and uses a probabilistic model to deter-
mine the document’s ranking.

 While discussing the full scoring formula for BM25 is beyond the scope of this
book, you can read more about how BM25 is implemented in Lucene at http://
arxiv.org/pdf/0911.5046.pdf.

 BM25 has three main settings—k1, b, and discount_overlaps:

■ k1 and b are numeric settings used to tweak how the scoring is calculated.
■ k1 controls how important term frequency is to the score (how often the term

occurs in the document, or TF from earlier in this chapter).
■ b is a number between 0 and 1 that controls what degrees of impact the length

of the document has on the score.
■ k1 is set to 1.2 and b is set to 0.75 by default.
■ The discount_overlaps setting can be used to tell Elasticsearch that multiple

tokens occurring at the same position within a field should or should not influ-
ence how the length is normalized. It defaults to true.

Now that you’ve seen the default TF-IDF scoring formula as well as an alternative,
BM25, let’s talk about how you can influence the scoring of documents in a more fine-
grained manner, with boosting.

6.3 Boosting
Boosting is the process by which you can modify the relevance of a document. There
are two different types of boosting. You can boost a document while you are indexing
it or when you query for the document. Because changing the boosting of a document
at index time stores data in the index, and the only way to change that boosting value
is to re-index the document, we definitely recommend you use the query-time boost-
ing because it’s the most flexible and allows you to change your mind about what
fields or terms are important without having to re-index your data.

Testing your scoring
Keep in mind that if you do tweak these settings, you need to be sure to have a
good testing infrastructure with which to judge changes in the ranking and scoring
of your documents. It makes no sense at all to change relevancy algorithm settings
without a way to evaluate your changes in a reproducible manner; anything less is
just guessing!
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://arxiv.org/pdf/0911.5046.pdf
http://arxiv.org/pdf/0911.5046.pdf

155Boosting
 Let’s take the example from the get-together index. In the example, if you’re
searching for a group, it makes sense that matching a group’s title is more important
than matching the description of the group. Take the Elasticsearch Berlin group. The
title contains only the most important information that the group is focused on, Elas-
ticsearch in the Berlin area, versus the description of the group, which may contain
many more terms. The title of a group should have more weight than the description,
and to accomplish this, you’ll use boosting.

 Before you start, though, it’s important to mention that boost numbers are not
exact multipliers. This means that the boost value is normalized when computing the
scores. For example, if you specify a boost of 10 for every single field, it will end up nor-
malized to 1 for every field, meaning no boost is applied. You should think of boost
numbers as relative; boosting the name field by 3 means that the name field is roughly
three times as important as the other fields.

6.3.1 Boosting at index time

As we mentioned, in addition to boosting a document during a query, you can also
boost it at index time. Even though we don’t recommend this type of boosting, as
you’ll see shortly, it can still be useful in some cases, so let’s talk about how to set it up.

 When doing this type of boosting, you need to specify the mapping for your field
with the boost parameter. For example, to boost the name field for the group type,
you’d create an index with mappings that look like those in the next listing.

curl -XPUT 'localhost:9200/get-together' -d'{
 "mappings": {
 "group": {
 "properties": {
 "name": {
 "boost": 2.0,
 "type": "string"
 },
 ... rest of the mappings ...
 }
 }
 }
}'

After specifying this mapping for the index, any document that’s indexed automati-
cally has a boost applied to the terms in the name field (stored with the document in
the Lucene index). Again, remember that this boost value is fixed, which means if you
decide you want to change it, you’ll need to re-index.

 Another reason to not do index-time boosting is that boost values are stored as low-
precision values in Lucene’s internal index structure; only a single byte is used to store
the floating-point number, so it’s possible to lose precision when calculating the final
score of a document.

Listing 6.3 Boosting the name field in the group type at index time

Index-time boosting value for
the name field
Licensed to Thomas Snead <n.ordickan@gmail.com>

156 CHAPTER 6 Searching with relevancy
 The final reason to not use index-time boosting is that the boost is applied to all
terms. Therefore, matching multiple terms in the boosted field implies a multiplied
boost, increasing the weight for the field even more.

 Because of these issues with boosting at index time, it’s much better to boost when
performing the queries, as you’ll see next.

6.3.2 Boosting at query time

There are quite a few ways to perform boosting when searching. If you’re using the
basic match, multi_match, simple_query_string, or query_string queries, you con-
trol the boost either on a per-term or per-field basis. Almost all of Elasticsearch’s query
types support boosting. If this isn’t flexible enough, you can control the boosting in a
more fine-grained manner with the function_score query, which we’ll cover a little
later in the chapter.

 With the match query, you can boost the query by using the additional boost
parameter, as shown in the next listing. Boosting the query means that each found
term in the configured field you query for gets a boost.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "bool": {
 "should": [
 {
 "match": {
 "description": {
 "query": "elasticsearch big data",
 "boost": 2.5
 }
 }
 },
 {
 "match": {
 "name": {
 "query": "elasticsearch big data"
 }
 }
 }]
 }
 }
 }
}'

This also works for other queries that Elasticsearch provides, such as the term query,
prefix query, and so on. In the previous example, notice that a boost was added only
to the first match query. Now the first match query has a bigger impact on the final
score than the second match query. It only makes sense to boost a query when you’re
combining multiple queries using the bool or and/or/not queries.

Listing 6.4 Query-time boosting using the match query

Query-time boosting
of this match query

No boosting for the
second match query
Licensed to Thomas Snead <n.ordickan@gmail.com>

157Boosting
6.3.3 Queries spanning multiple fields

For queries that span multiple fields, such as the multi_match query, you also have
access to an alternative syntax. You can specify the boost for the entire multi_match,
similar to the match query with the boost parameter you’ve already seen, as shown in
the next listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "multi_match": {
 "query": "elasticsearch big data",
 "fields": ["name", "description"],
 "boost": 2.5
 }
 }
}'

Or you can specify a boost for only particular fields by using a special syntax. By
appending the field name with a caret (^) and the boost value, you tell Elasticsearch
to boost only that field. The following listing shows an example of the previous query,
but instead of boosting the entire query, you boost only the name field.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "multi_match": {
 "query": "elasticsearch big data",
 "fields": ["name^3", "description"]
 }
 }
}'

In the query_string query, you can boost individual terms using a special syntax,
appending the term with a caret (^) and the boost value. An example searching for
“elasticsearch” and “big data” and boosting “elasticsearch” by 3 would look like the
next listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "query_string": {
 "query": "elasticsearch^3 AND \"big data\""
 }
 }
}'

Listing 6.5 Specify a boost for the entire multi_match query

Listing 6.6 Boosting on the name field only

Listing 6.7 Boosting individual terms in query_string queries

The name field being
boosted by 3 with
the ^3 suffix

Boosting a specific
term by 3 with a
^3 suffix
Licensed to Thomas Snead <n.ordickan@gmail.com>

158 CHAPTER 6 Searching with relevancy
As we mentioned before, keep in mind when boosting either fields or terms that a
boost is a relative value and not an absolute multiplier. If you boost all of the terms
you’re searching for by the same amount, it’s the same as though you boosted none of
them because Lucene normalizes the boost values. Remember that boosting a field by
4 doesn’t automatically mean that the score for that field will be multiplied by 4, so
don’t worry if the score isn’t an exact multiplication.

 Because boosting during query time is highly flexible, play around with it! Don’t
be afraid to experiment with the dataset until you get the desired relevancy from your
results. Changing the boosting is as easy as adjusting a number in the query you send
to Elasticsearch.

6.4 Understanding how a document was scored
with explain
Before we go much further into customizing the scoring of documents, we should
cover how you can break down the scoring of a document on a result-by-result basis,
with the actual numbers Lucene is using under the hood. This is helpful in under-
standing why one document matches a query better than another from Elasticsearch’s
perspective.

 This is called explaining the score, and you can tell Elasticsearch to do it by specify-
ing the explain=true flag, either on the URL when sending the request or by setting
the explain flag to true in the body of the request itself. This can be useful in explain-
ing why a document was scored a particular way, but it has another use: explaining
why a document didn’t match a query. This turns out to be useful if you expect a doc-
ument to match a query but it isn’t returned in the results.

 Before we get to that, though, let’s take a look at an example of explaining the
results of a query in the next listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'
{
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "explain": true
}'

You can see in this listing how to add the explain parameter. This, in turn, produces
verbose output. Let’s take a look at the first result returned from this request:

{
 "hits" : {
 "total" : 9,
 "max_score" : 0.4809364,
 "hits" : [{

Listing 6.8 Setting the explain flag in the request body

Setting the
explain flag in
the request body
Licensed to Thomas Snead <n.ordickan@gmail.com>

159Understanding how a document was scored with explain

T

do

e

s

 "_shard" : 0,
 "_node" : "Kwc3QxdsT7m23T_gb4l3pw",
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "3",
 "_score" : 0.4809364,
 "_source":{
 "name": "Elasticsearch San Francisco",
 "organizer": "Mik",
 "description": "Elasticsearch group for ES users of all knowledge levels",
 "created_on": "2012-08-07",
 "tags": ["elasticsearch", "big data", "lucene", "open source"],
 "members": ["Lee", "Igor"],
 "location": "San Francisco, California, USA"
},
 "_explanation" : {
 "value" : 0.4809364,
 "description" : "weight(description:elasticsearch in 1)

[PerFieldSimilarity], result of:",
 "details" : [{
 "value" : 0.4809364,
 "description" : "fieldWeight in 1, product of:",
 "details" : [{
 "value" : 1.0,
 "description" : "tf(freq=1.0), with freq of:",
 "details" : [{
 "value" : 1.0,
 "description" : "termFreq=1.0"
 }]
 }, {
 "value" : 1.5389965,
 "description" : "idf(docFreq=6, maxDocs=12)"
 }, {
 "value" : 0.3125,
 "description" : "fieldNorm(doc=1)"
 }]
 }]
 }
 }]
 }
}

The added part of this response is the new _explanation key, which contains a break-
down of each of the different parts of the score. In this case, you’re searching the
description for “elasticsearch,” and the term “elasticsearch” occurs once in the descrip-
tion of the document, so the term frequency (TF) for that term is 1.

 Likewise, the inverse document frequency (IDF) explanation shows that the term
“elasticsearch” occurs in 6 out of the 12 documents in this index. Finally, you can also
see the normalization for this field, which Lucene uses internally. These scores multi-
plied together determine the final score:

1.0 x 1.5389965 x 0.3125 = 0.4809364.

_explanation contains
an explanation for the
document’s score

op-level
score

for this
cument

Human-
readable

xplanation
for the

core value

Composite
parts
combined
to make the
final score
Licensed to Thomas Snead <n.ordickan@gmail.com>

160 CHAPTER 6 Searching with relevancy
Keep in mind that this is only a simple example with a single query term, and we looked
only at the explanation for a single document. The explanation can be extremely ver-
bose and much more difficult to understand when used for more complex queries.
It’s also important to mention that using the explain feature adds additional over-
head to Elasticsearch when querying, so make sure you use it only to debug a query,
rather than specifying it with every request by default.

6.4.1 Explaining why a document did not match

We mentioned earlier that explain has another use. Just as you can get an explana-
tion of how the score was calculated for a particular matching document, you can also
use the special explain API to tell why a document did not match a query.

 But in this case, because you can’t simply add the explain parameter, there’s a dif-
ferent API to use it, as shown in the next listing.

curl -XPOST 'localhost:9200/get-together/group/4/_explain' -d'
{
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 }
}'
{
 "_id": "4",
 "_index": "get-together",
 "_type": "group",
 "explanation": {
 "description": "no matching term",
 "value": 0.0
 },
 "matched": false
}

In this example, because the term “elasticsearch” doesn’t occur in the description
field for this document, the explanation is a simple “no matching term.” You can also
use this API to get the score of a single document if you know the document’s ID.

 Armed with this tool, which allows you to determine how documents are scored,
experiment. Play around. Don’t be afraid to use the tools in this book to modify
your scoring.

 Next, before we get into more meat about tweaking the score, we’ll talk about the
impact of scoring and what you can do if you find that scoring is taking too long.

6.5 Reducing scoring impact with query rescoring
Something we haven’t talked about yet is the impact of scoring on the speed of the sys-
tem. In most regular querying, computing the score of a document requires a small

Listing 6.9 Explain API to discover why a document didn’t match a query

Explanation of why
the document didn’t
match the query

Flag indicating whether the
document matched the query
Licensed to Thomas Snead <n.ordickan@gmail.com>

161Reducing scoring impact with query rescoring
amount of overhead. This is because TF-IDF has been heavily optimized by the Lucene
team to be efficient.

 In some cases, however, scoring can be more resource-intensive:

■ Scoring with a script runs a script to calculate the score for each document in
the index

■ Doing a phrase query searches for words within a certain distance from each
other, with a large slop (discussed in section 4.2.1)

In those cases, you may want to lessen the impact of the scoring algorithm running on
millions or billions of documents.

 To address this, Elasticsearch has a feature called rescoring. Rescoring means that
an initial query is performed, and then a second round of scoring is computed on the
results that are returned; hence the name. This means that for a potentially expen-
sive query that uses a script, you can execute it on only the top 1,000 hits retrieved,
using a much cheaper match query. Let’s look at an example of using rescore in the
next listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "rescore": {
 "window_size": 20,
 "query": {
 "rescore_query": {
 "match": {
 "title":{
 "type": "phrase",
 "query": "elasticsearch hadoop",
 "slop": 5
 }
 }
 },
 "query_weight": 0.8,
 "rescore_query_weight": 1.3
 }
 }
}'

In this example you search for all the documents that have “elasticsearch” in the title
and then take the top 20 results and rescore them, using a phrase query with a high
level of slop. Even though a phrase query with a high slop value can be expensive to
run, you don’t have to worry, because the query will run on only the top 20 documents
instead of potentially millions or billions of documents. You can use the query_weight

Listing 6.10 Using rescore to score a subset of matching documents

Original query to execute
on all documents

Number of results on which
to perform the rescore

Query that will run
on the top 20 results
of the original query

Weight of the scores from
the original query

Weight of the scores from
the rescored query
Licensed to Thomas Snead <n.ordickan@gmail.com>

162 CHAPTER 6 Searching with relevancy
and rescore_query_weight parameters to weigh each of the different queries, depend-
ing on how much you want the score to be determined by the initial query and the
rescore query. You can use multiple rescore queries in sequence, each one taking
the previous one as the input.

6.6 Custom scoring with function_score
Finally, we come to one of the coolest queries that Elasticsearch has to offer:
function_score. The function_score query allows you to take control over the rele-
vancy of your results in a fine-grained manner by specifying any number of arbitrary
functions to be applied to the score of the documents matching an initial query.

 Each function in this case is a small snippet of JSON that influences the score in
some way. Sound confusing? Well, we’ll clear it up by the end of this section. We’ll
start with the basic structure of the function_score query; the next listing an exam-
ple that doesn’t perform any fancy scoring.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": []
 }
 }
}'

Simple enough—it looks just like a regular match query inside a function_score
wrapper. There’s a new key, functions, that’s currently empty, but don’t worry
about that yet; you’ll put things into that array in just a second. This listing is
intended to show that the results of this query are going to be the documents that the
function_score functions operate on. For example, if you have 30 total documents in
the index and the match query for “elasticsearch” in the description field matches 25
of them, the functions inside the array will be applied to those 25 documents.

 The function_score query has a number of different functions, and in addition to
the original query, each function can take another filter element. You’ll see examples
of this as we go into the details about each function in the next sections.

6.6.1 weight

The weight function is the simplest of the bunch; it multiplies the score by a constant
number. Note that instead of a regular boost field, which increases the score by a
value that gets normalized, weight really does multiply the score by the value.

Listing 6.11 Function_score query basic structure

Empty
functions list
Licensed to Thomas Snead <n.ordickan@gmail.com>

163Custom scoring with function_score
 In the previous example, you’re already matching all of the documents that have
“elasticsearch” in the description, so you’ll boost documents that contain “hadoop” in
the description as well in the next listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": [
 {
 "weight": 1.5,
 "filter": {"term": {"description": "hadoop"}}
 }
]
 }
 }
}'

The only change to the example was adding the following snippet to the functions
array:

{
 "weight": 1.5,
 "filter": {"term": {"description": "hadoop"}}
}

This means that documents that match the term query for “hadoop” in the descrip-
tion will have their score multiplied by 1.5.

 You can have as many of these as you’d like. For example, to also increase the score
of get-together groups that mention “logstash,” you could specify two different weight
functions, as in the following listing.

curl -XPOST 'localhost:9200/get-together/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": [
 {
 "weight": 2,
 "filter": {"term": {"description": "hadoop"}}
 },

Listing 6.12 Using weight function to boost documents containing “hadoop”

Listing 6.13 Specifying two weight functions

weight function
boosting documents
with “hadoop” in
the description
by 1.5

Boosting
documents
containing
“hadoop” in the
description by 2
Licensed to Thomas Snead <n.ordickan@gmail.com>

164 CHAPTER 6 Searching with relevancy
 {
 "weight": 3,
 "filter": {"term": {"description": "logstash"}}
 }
]
 }
 }
}'

6.6.2 Combining scores

Let’s talk about how these scores get combined. There are two different factors we
need to discuss when talking about scores:

■ How the scores from each of the individual functions should be combined,
called the score_mode

■ How the score of the functions should be combined with the original query
score (searching for “elasticsearch” in the description in our example), known
as boost_mode

The first factor, known as the score_mode parameter, deals with how each of the dif-
ferent functions’ scores are combined. In the previous cURL request you have two func-
tions: one with a weight of 2, the other with a weight of 3. You can set the score_mode
parameter to multiply, sum, avg, first, max, or min. If not specified, the scores from
each function will be multiplied together.

 If first is specified, only the first function with a matching filter will have its score
taken into account. For example, if you set score_mode to first and had a document
with both “hadoop” and “logstash” in the description, only a boost factor of 2 would
be applied, because that’s the first function that matches the document.

 The second score-combining setting, known as boost_mode, controls how the score
of the original query is combined with the scores of the functions themselves. If not
specified, the new score will be the original query score and the combined function’s
score multiplied together. You can change this to sum, avg, max, min, or replace. Set-
ting this to replace means that the original query’s score is replaced by the score of
the functions.

 Armed with these settings, you can tackle the next function score function, which
is used for modifying the score based on a field’s value. The functions we’ll cover are
field_value_factor, script_score, and random_score, as well as the three decay
functions: linear, gauss, and exp. We’ll start with the field_value_factor function.

6.6.3 field_value_factor

Modifying the score based on other queries is quite useful, but a lot of people want to
use the data inside their documents to influence the score of a document. In this exam-
ple, you might want to use the number of reviews an event has received to increase the
score for that event; this is possible to do by using the field_value_factor function
inside a function_score query.

Boosting
documents
containing
“logstash” in the
description by 3
Licensed to Thomas Snead <n.ordickan@gmail.com>

165Custom scoring with function_score
 The field_value_factor function takes the name of a field containing a
numeric field, optionally multiplies it by a constant number, and then finally applies
a math function such as taking the logarithm of the value. Look at the example in the
next listing.

curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": [
 {
 "field_value_factor": {
 "field": "reviews",
 "factor": 2.5,
 "modifier": "ln"
 }
 }
]
 }
 }
}'

The score that comes out of the field_value_factor function here will be

ln(2.5 * doc['reviews'].value)

For a document with a value of 7 in the reviews field, the score would be

ln(2.5 * 7) -> ln(17.5) -> 2.86

Besides ln there are other modifiers: none (default), log, log1p, log2p, ln1p, ln2p,
square, sqrt, and reciprocal. One more thing to remember when using field_
value_factor: it loads all the values of whichever field you’ve specified into mem-
ory, so the scores can be calculated quickly; this is part of the field data, which we’ll
discuss in section 6.10. But before we talk about that, we’ll cover another function,
which can give you finer-grained control over influencing the score by specifying a
custom script.

6.6.4 Script

Script scoring gives you complete control over how to change the score. You can per-
form any sort of scoring inside a script.

 As a brief refresher, scripts are written in the Groovy language, and you can access
the original score of the document by using _score inside a script. You can access the

Listing 6.14 Using field_value_factor inside a function_score query

Numeric field to
use as a value

Factor the reviews field
will be multiplied by

Optional modifier to
calculate the score with
Licensed to Thomas Snead <n.ordickan@gmail.com>

166 CHAPTER 6 Searching with relevancy
values of a document using doc['fieldname']. An example of scoring using a slightly
more complex script is shown in the next listing.

curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": [
 {
 "script_score": {
 "script": "Math.log(doc['attendees'].values.size() *
myweight)",
 "params": {
 "myweight": 3
 }
 }
 }
],
 "boost_mode": "replace"
 }
 }
}'

In this example, you’re using the size of the attendee list to influence the score by
multiplying it by a weight and taking the logarithm of it.

 Scripting is extremely powerful because you can do anything you’d like inside it,
but keep in mind that scripts will be much slower than regular scoring because they
must be executed dynamically for each document that matches your query. When
using the parameterized script as in listing 6.15, caching the script helps performance.

6.6.5 random

The random_score function gives you the ability to assign random scores to your doc-
uments. The advantage of being able to sort documents randomly is the ability to
introduce a bit of variation into the first page of results. When searching for get-
togethers, sometimes it is nice to not always see the same result at the top.

 You can also optionally specify a seed, which is a number passed with the query that
will be used to generate the randomness with the function; this lets you sort docu-
ments in a random manner, but by using the same random seed, the results will be
sorted the same way if the same request is performed again. That’s the only option it
supports, so that makes this a simple function.

 The next listing shows an example of using it to sort get-togethers randomly.

Listing 6.15 Scoring using a complex script

Script that will
be run on each
document to
determine a
value

The variable myweight
will be replaced by the
parameters in the request.

The original document’s score
will be replaced by the score
generated in the script.
Licensed to Thomas Snead <n.ordickan@gmail.com>

167Custom scoring with function_score
curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "functions": [
 {
 "random_score": {
 "seed": 1234
 }
 }
]
 }
 }
}'

Don’t worry if this doesn’t seem useful yet. Once we’ve covered all of the different
functions, we’ll come up with an example that ties them all together at the end of this
section. Before we do that, though, there’s one more set of functions we need to dis-
cuss: decay functions.

6.6.6 Decay functions

The last set of functions for function_score is the decay functions. They allow you
to apply a gradual decay in the score of a document based on some field. There are
a number of ways this can be useful. For example, you may want to make get-togethers
that occurred more recently have a higher score, with the score gradually tapering
off as the get-togethers get older. Another example is with geolocation data; using
the decay functions, you can increase the score of results that are closer to a geo
point (a user’s location, for example) and decrease the score the farther the group
is from the point.

 There are three types of decay functions: linear, gauss, and exp. Each decay func-
tion follows the same sort of syntax:

{
 "TYPE": {
 "origin": "...",
 "offset": "...",
 "scale": "...",
 "decay": "..."
 }
}

The TYPE can be one of the three types. Each of the types corresponds to a differently
shaped curve, shown in figures 6.4, 6.5, and 6.6.

Listing 6.16 Using random_score function to sort documents randomly

Optional seed for the
random_score function
Licensed to Thomas Snead <n.ordickan@gmail.com>

168 CHAPTER 6 Searching with relevancy
2 3 410

x

Figure 6.4 Linear curve—scores decrease from the origin at the same rate.

–4 –3 –2 –1 0 1 2 3 4 5–5

0.0

0.2

0.4

0.6

0.8

1.0

μ
,σ

2
(

)
X

X

μ=0,

μ=0,

μ=0,

μ=–2,

σ2=0.2,

σ2=1.0,

σ2=5.0,

σ2=0.5,

Figure 6.5 Gauss curve—scores decrease more slowly until the scale point is reached and then
they decrease faster.
Licensed to Thomas Snead <n.ordickan@gmail.com>

169Custom scoring with function_score
6.6.7 Configuration options

The configuration options define what the curve will look like; there are four configu-
ration options for each of the three decay curves:

■ The origin is the center point of the curve, so it’s the point where you’d like
the score to be the highest. In the geo-distance example, the origin is most like
a person’s current location. In other situations the origin can also be a date or a
numeric field.

■ The offset is the distance away from the originating point, before the score
starts to be reduced. In our example, if the offset is set to 1km, it means the
score will not be reduced for points within one kilometer from the origin point.
It defaults to 0, meaning that scores immediately start to decay as the numeric
value moves away from the origin.

■ The scale and decay options go hand in hand; by setting them, you can say
that at the scale value for a field, the score should be reduced to the decay.
Sound confusing? It’s much simpler to think of it with actual values. If you set
the scale to 5km and the decay to 0.25, it’s the same as saying “at 5 kilometers
from my origin point, the score should be 0.25 times the score at the origin.”

The next listing shows an example of Gaussian decay with the get-together data.

curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {"match_all": {}},

Listing 6.17 Using Gaussian decay on the geo point location

4.8 5.6 6.4 7.2 8.88.03.2 4.02.41.60.8

x

Figure 6.6 Exponential curve—scores drastically drop from the origin.
Licensed to Thomas Snead <n.ordickan@gmail.com>

170 CHAPTER 6 Searching with relevancy
 "functions": [
 {
 "gauss": {
 "geolocation": {
 "origin": "40.018528,-105.275806",
 "offset": "100m",
 "scale": "2km",
 "decay": 0.5
 }
 }
 }
]
 }
 }
}'

Let’s look at what’s going on in this listing:

■ You use a match_all query, which will return all results.
■ Then you score each result using a Gaussian decay on the score.
■ The origin point is set in Boulder, Colorado, so the results that come back have

the get-togethers in Boulder scored the highest, then results in Denver (a city
near Boulder), and so on, as the different get-togethers get farther and farther
away from the point of origin.

6.7 Tying it back together
We promised we’d show an example that used multiple functions, and we didn’t lie.
The next listing shows a query for all of the get-together events, where

■ A particular term is weighted higher.
■ The reviews are taken into account.
■ Events with more attendees rank higher.
■ Events nearer to a geo point are boosted.

Seeing the example will make more sense, so take a look at the next listing.

curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "function_score": {
 "query": {"match_all": {}},
 "functions": [
 {
 "weight: 1.5,
 "filter": {"term": {"description": "hadoop"}}
 },
 {
 "field_value_factor": {
 "field": "reviews",
 "factor": 10.5,
 "modifier": "log1p"

Listing 6.18 Tying all the function_score functions together

Point of
origin for
the decay
to start at

Scores will remain the
same within 100 meters
from the origin point.

At 2 kilometers from the
origin point, the score will
be reduced by half.

The original
query

matches all
documents.

Boost documents with
descriptions containing
“hadoop” by 1.5 using
the weight function.

Score documents with
higher reviews higher.
Licensed to Thomas Snead <n.ordickan@gmail.com>

171Sorting with scripts
 }
 },
 {
 "script_score": {
 "script": "Math.log(doc['attendees'].values.size() *
myweight)",
 "params": {
 "myweight": 3
 }
 }
 },
 {
 "gauss": {
 "geolocation": {
 "origin": "40.018528,-105.275806",
 "offset": "100m",
 "scale": "2km",
 "decay": 0.5
 }
 }
 }
],
 "score_mode": "sum",
 "boost_mode": "replace"
 }
 }
}'

In this example, the following occurs:

1 You start by matching all events in the index due to the match_all.
2 You then boost events that have the term “hadoop” in their description using

the weight function.
3 Next, you use the number of reviews an event received to modify the score with

the field_value_factor function.
4 Then you take the number of attendees into account using the script_score.
5 Finally, you make the score gradually decay as it gets farther from your origin

point with the gauss decay.

6.8 Sorting with scripts
Along with modifying the score of a document with a script, Elasticsearch allows you
to use a script to sort documents before they’re returned to you. This can be useful if
you need to sort on a field that doesn’t exist as a field in the document.

 For example, imagine you’re searching for events about “elasticsearch” but you
want to sort the groups by the number of people who attended; you can easily do this
with the request shown in the following listing.

Use the number of
attendees to influence
the score.

Decay the score the farther
it is from the geo point
40.018528,-105.275806.

Add each function’s score
together to produce the total
value for the functions.

Replace the original match_all
query’s score with the score
from the functions.
Licensed to Thomas Snead <n.ordickan@gmail.com>

172 CHAPTER 6 Searching with relevancy
curl -XPOST 'localhost:9200/get-together/event/_search?pretty' -d'{
 "query": {
 "match": {
 "description": "elasticsearch"
 }
 },
 "sort": [
 {
 "_script": {
 "script": "doc['attendees'].values.size()",
 "type": "number",
 "order": "desc"
 }
 },
 "_score"
]
}'

You should notice that you will get back a field in each matching document that
looks like "sort": [5.0, 0.28856182]; these are the values that Elasticsearch has
used to sort the documents. Notice that the 5.0 is a number; that’s because you spec-
ified to Elasticsearch that the output of your script was a number (as opposed to a
string). The second value in the sort array is the original score of the document
because you specified it as the next sort field in case the numbers of attendees match
for multiple documents.

 Although this is powerful, it’s much easier and faster to instead use the function
_score query to influence the score of your document and sort by the _score instead
of sorting using a custom script; that way all of your relevancy changes are in a single
place (the query) instead of inside the sorting.

 Another option is to have the number of attendees as another numeric field in the
document that’s indexed. That makes sorting or changing the score using a function
a lot easier to do.

 Next, let’s take a little detour and talk about something that’s somewhat related to
scripting but a little different: field data.

6.9 Field data detour
The inverted index is great when you want to look for a term and get back the match-
ing documents. But when you need to sort on a field or return some aggregations,
Elasticsearch needs to quickly figure out, for each matching document, the terms that
will be used for sorting or aggregations.

 Inverted indices don’t perform well for such tasks, and this is where field data
becomes useful. When we talk about field data, we’re talking about all of the unique

Listing 6.19 Sorting documents with a script

Use the number
of values in the
attendees field as
a sorting value.This sorting

value is a
numeric

type. Order the attendee count
in descending fashion.

Use the _score as the secondary
sorting value for documents that have
the same number of attendees.
Licensed to Thomas Snead <n.ordickan@gmail.com>

173Field data detour
values for a field. These values are loaded by Elasticsearch into memory. If you have
three documents that look like these

{"body": "quick brown fox"}
{"body": "fox brown fox"}
{"body": "slow turtle"}

the terms that would get loaded into memory would be quick, brown, fox, slow, and
turtle. Elasticsearch loads these in a compressed manner into the field data cache,
which we’ll look at next.

6.9.1 The field data cache

The field data cache is an in-memory cache that Elasticsearch uses for a number of
things. This cache is usually (but not always) built the first time the data is needed and
then kept around to be used for various operations. This loading can take a lot of time
and CPU if you have lots of data, slowing down that first search.

 This is where warmers, queries that Elasticsearch runs automatically to make sure
internal caches are filled, can come in handy to preload data used for queries before
it’s needed. We’ll discuss warmers more in chapter 10.

Not only should you be aware of the memory used by the cache, but you should also
be aware that the initial loading of this cache can take a nontrivial amount of time.
You may notice this when performing aggregations and seeing that the first aggrega-
tion takes 2–3 seconds to complete, whereas subsequent aggregation requests return
in 30 milliseconds.

 If this loading time becomes problematic, you can pay the price at index time and
make Elasticsearch load the field data automatically when making a new segment
available for search. To do this for a field you sort or aggregate on, you have to set
fielddata.loading to eager in the mapping. By your setting this to eager, Elastic-
search won’t wait until the first search to load the field data but will do it as soon as it’s
available to be loaded.

 For example, to make the verbatim tags of a get-together group (on which you run
a terms aggregation to get the top 10 tags) eagerly loaded, you can have the mapping
shown in the following listing.

Why the field data cache is so necessary
Elasticsearch needs this cache because a lot of comparison and analytic operations
operate on a large amount of data, and the only way these operations can be accom-
plished in a reasonable amount of time is if the data is accessible in memory. Elas-
ticsearch goes to great lengths to minimize the amount of memory that this cache
takes up, but it still ends up being one of the largest users of heap space in the Java
virtual machine.
Licensed to Thomas Snead <n.ordickan@gmail.com>

174 CHAPTER 6 Searching with relevancy
curl -XPOST 'localhost:9200/get-together' –d '
{
 "mappings": {
 "group": {
 "properties": {
 "title": {
 "type": "string",
 "fielddata": {
 "loading": "eager"
 }
 }
 }
 }
 }
}'

6.9.2 What field data is used for

As previously mentioned, field data is used for a number of things in Elasticsearch.
Here are some of the uses of field data:

■ Sorting by a field
■ Aggregating on a field
■ Accessing the value of a field in a script with the doc['fieldname'] notation
■ Using the field_value_factor function in the function_score query
■ Using the decay functions in the function_score query
■ Returning fields from field data using fielddata_fields in a search request
■ Caching the IDs of a parent/child document relationship

Probably the most common of these uses is sorting or aggregating on a field. For
example, if you sort the get-together results by the organizer field, all of the unique
values of that field must be loaded into memory in order for them to be efficiently
compared to provide a sorting order.

 Right behind sorting on a field is aggregating on a field. When a terms aggrega-
tion is performed, Elasticsearch needs to be able to count each unique term, so those
unique terms and their counts must be held in memory in order to generate these
sorts of analytic results. Likewise in the case of a statistical aggregation, the numeric
data for a field has to be loaded in order to calculate the resulting values.

 Not to fear, though; as I mentioned, although this may sound like a lot of data to
load (and it certainly can be), Elasticsearch does its best to load the data in a com-
pressed manner. That said, you do need to be aware of it, so let’s talk about how to
manage field data in your cluster.

6.9.3 Managing field data

There are a few ways to manage field data in an Elasticsearch cluster. Now, what do we
mean when we say “manage”? Well, managing field data means avoiding issues in the

Listing 6.20 Eager loaded field data for the title field

Configuring the field data
for the title field to be
loaded eagerly
Licensed to Thomas Snead <n.ordickan@gmail.com>

175Field data detour
cluster where JVM garbage collection is taking a long time or so much memory is
being loaded that you get an OutOfMemoryError; it would also be beneficial to avoid
cache churn, so data isn’t constantly being loaded and unloaded from memory.

 We’re going to talk about three different ways to do such management:

■ Limiting the amount of memory used by field data
■ Using the field data circuit breaker
■ Bypassing memory altogether with doc values

LIMITING THE AMOUNT OF MEMORY USED BY FIELD DATA

One of the easiest ways to make sure your data doesn’t take up too much space in
memory is to limit the field data cache to a certain size. If you don’t specify this, Elas-
ticsearch doesn’t limit the cache at all, and data isn’t automatically expired from the
cache after a set time.

 There are two different options when it comes to limiting the field data cache: you
can limit by a size amount, or you can set an expiration time after which the field data
in the cache will be invalidated.

 To set these options, specify the following in your elasticsearch.yml file; these set-
tings can’t be updated through the cluster update settings API and therefore require a
restart when changed:

indices.fielddata.cache.size: 400mb
indices.fielddata.cache.expire: 25m

But when setting these, it makes more sense to set the indices.fielddata.cache
.size option instead of the expire option. Why? Because when field data is loaded
into the cache, it will stay there until the limit is reached, and then it will be evicted in
a last-recently-used (LRU) manner. By setting just the size limit, you’re also removing
only the oldest data from the cache once the limit has been reached.

 When setting the size, you can also use a relative size instead of an absolute, so
instead of the 400mb from our example, you can specify 40% to use 40% of the JVM’s
heap size for the field data cache. This can be useful if you have machines with differ-
ing amounts of physical memory but want to unify the elasticsearch.yml configuration
file between them without specifying absolute values.

USING THE FIELD DATA CIRCUIT BREAKER

What happens if you don’t set the size of the cache? Well, in order to protect against
loading too much data into memory, Elasticsearch has the concept of a circuit breaker,
which monitors the amount of data being loaded into memory and “trips” if a certain
limit is reached.

 In the case of field data, every time a request happens that would load field data
(sorting on a field, for example), the circuit breaker estimates the amount of memory
required for the data and checks whether loading it would exceed the maximum size.
If it does exceed the size, an exception is returned and the operation is prevented.

 This has a number of benefits: when applying a limit to the field data cache, the
size of field data can be calculated only after the data has been loaded into memory, so
Licensed to Thomas Snead <n.ordickan@gmail.com>

176 CHAPTER 6 Searching with relevancy
it’s possible to load too much data and run out of memory; the circuit breaker, on the
other hand, estimates the size of the data before it’s loaded so as to avoid loading it if it
would cause the system to run out of memory.

 Another benefit of this approach is that the circuit breaker limit can be dynami-
cally adjusted while the node is running, whereas the size of the cache must be set in
the configuration file and requires restarting the node to change. The circuit breaker
is configured by default to limit the field data size to 60% of the JVM’s heap size. You
can configure this by sending a request like this:

curl -XPUT 'localhost:9200/_cluster/settings'
{
 "transient": {
 "indices.breaker.fielddata.limit": "350mb"
 }
}

Again, this setting supports either an absolute value like 350mb or a percentage such as
45%. Once you’ve set this, you can see the limit and how much memory is currently
tracked by the breaker with the Nodes Stats API, which we’ll talk about in chapter 11.

NOTE As of version 1.4, there is also a request circuit breaker, which helps
you make sure that other in-memory data structures generated by a request
don’t cause an OutOfMemoryError by limiting them to a default of 40%.
There’s also a parent circuit breaker, which makes sure that the field data and
the request breakers together don’t exceed 70% of the heap. Both limits
can be updated via the Cluster Update Settings API through indices.breaker
.request.limit and indices.breaker.total.limit, respectively.

BYPASSING MEMORY AND USING THE DISK WITH DOC VALUES

So far you’ve seen that you should use circuit breakers to make sure outstanding
requests don’t crash your nodes, and if you fall consistently short of field data space,
you should either increase your JVM heap size to use more RAM or limit the field
data size and live with bad performance. But what if you’re consistently short on
field data space, don’t have enough RAM to increase the JVM heap, and can’t live with
bad performance caused by field data evictions? This is where doc values come in.

 Doc values take the data that needs to be loaded into memory and instead prepare
it when the document is indexed, storing it on disk alongside the regular index data.
This means that when field data would normally be used and read out of memory, the
data can be read from disk instead. This provides a number of advantages:

■ Performance degrades smoothly—Unlike default field data, which needs to live in
the JVM heap all at once, doc values are read from the disk, like the rest of the
index. If the OS can’t fit everything in its RAM caches, more disk seeks will be
needed, but there are no expensive loads and evictions, no risk of OutOfMemory-
Errors, and no circuit-breaking exceptions because the circuit breaker pre-
vented the field data cache from using too much memory.
Licensed to Thomas Snead <n.ordickan@gmail.com>

177Field data detour
■ Better memory management—When used, doc values are cached in memory by the
kernel, avoiding the cost of garbage collection associated with heap usage.

■ Faster loading—With doc values, the uninverted structure is calculated at index
time, so even when you run the first query, Elasticsearch doesn’t have to unin-
vert on the fly. This makes the initial requests faster, because the uninverting
process has already been performed.

As with everything in this chapter, there’s no such thing as free lunch. Doc values
come with disadvantages, too:

■ Bigger index size—Storing all doc values on disk inflates the index size.
■ Slightly slower indexing—The need to calculate doc values at index time slows

down the process of indexing.
■ Slightly slows requests that use field data—Disk is also slower than memory, so some

requests that would usually use an already-loaded field data cache in memory
will be slightly slower when reading doc values from disk. This includes sorting,
facets, and aggregations.

■ Works only on non-analyzed fields—As of version 1.4, doc values don’t support
analyzed fields. If you want to build a word cloud of the words in event titles,
for example, you can’t take advantage of doc values. Doc values can be used for
numeric, date, Boolean, binary, and geo-point fields, though, and work well
for large datasets on non-analyzed data, such as the timestamp field of log
messages that are indexed into Elasticsearch.

The good news is that you can mix and match fields that use doc values with those that
use the in-memory field data cache, so although you may want to use doc values for the
timestamp field in your events, you can still keep the event’s title field in memory.

 How are doc values used? Because they’re written out at indexing time, configur-
ing doc values has to happen in the mapping for a particular field. If you have a string
field that’s not analyzed and you’d like to use field values on it, you can configure the
mapping when creating an index, as shown in the next listing.

curl -XPOST 'localhost:9200/myindex' -d'
{
 "mappings": {
 "document": {
 "properties": {
 "title": {
 "type": "string",
 "index": "not_analyzed",
 "doc_values": true
 }
 }
 }
 }
}'

Listing 6.21 Using doc-values in the mapping for the title field

Configuring the title
field to use doc_values
for its field data
Licensed to Thomas Snead <n.ordickan@gmail.com>

178 CHAPTER 6 Searching with relevancy
Once the mapping has been configured, indexing and searching will work as normal
without any additional changes.

6.10 Summary
You now have a better understanding of how scoring works inside Elasticsearch as well
as how documents interact with the field data cache, so let’s review what this chapter
was about:

■ The frequency of a term and the number of times that term occurs in a docu-
ment are used to calculate the score of a term inside a query.

■ Elasticsearch has a lot of tools to customize and modify scoring.
■ Scoring impact can be lessened by rescoring a subset of documents.
■ Use the explain API to understand how a document has been scored.
■ The function_score query gives you ultimate control over scoring your

documents.
■ Understanding the field data cache can help you understand how your Elastic-

search cluster uses memory.
■ Alternatives like doc_values can be used if the field data cache is using too

much memory.

In chapter 7 we’ll move on to how you can not only get the results of a query but also
explore data from a different angle using aggregations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Exploring your data
with aggregations
So far in this book, we’ve concentrated on the use case of indexing and searching:
you have many documents and the user wants to find the most relevant matches to
some keywords. There are more and more use cases where users aren’t interested
in specific results. Instead, they want to get statistics from a set of documents. These
statistics might be hot topics for news, revenue trends for different products, the
number of unique visitors to your website, and much more.

 Aggregations in Elasticsearch solve this problem by loading the documents
matching your search and doing all sorts of computations, such as counting the
terms of a string field or calculating the average on a numeric field. To look at
how aggregations work, we’ll use an example from the get-together site you’ve
worked with in previous chapters: a user entering your site may not know what
groups to look for. To give the user something to start with, you could make the

This chapter covers
■ Metrics aggregations
■ Single and multi-bucket aggregations
■ Nesting aggregations
■ Relations among queries, filters, and

aggregations
179

Licensed to Thomas Snead <n.ordickan@gmail.com>

180 CHAPTER 7 Exploring your data with aggregations
UI show the most popular tags for existing groups of your get-together site, as illus-
trated in figure 7.1.

 Those tags would be stored in a separate field of your group documents. The user
could then select a tag and filter down to only documents containing that tag. This
makes it easier for users to find groups relevant to their interests.

 To get such a list of popular tags in Elasticsearch, you’d use aggregations, and in
this specific case, you’d use the terms aggregation on the tags field, which counts
occurrences of each term in that field and returns the most frequent terms. Many
other types of aggregations are also available, and we’ll discuss them later in this chap-
ter. For example, you can use a date_histogram aggregation to show how many events
happened in each month of the last year, use the avg aggregation to show you the
average number of attendees for each event, or even find out which users have similar
taste for events as you do by using the significant_terms aggregation.

What about facets?
If you’ve used Lucene, Solr, or even Elasticsearch for some time, you might have
heard about facets. Facets are similar to aggregations, because they also load the
documents matching your query and perform computations in order to return statis-
tics. Facets are still supported in versions 1.x but are deprecated and will be removed
in version 2.0.

The main difference between aggregations and facets is that you can’t nest multiple
types of facets in Elasticsearch, which limits the possibilities for exploring your data.
For example, if you had a blogging site, you could use the terms facet to find out the
hot topics this year, or you could use the date histogram facet to find out how many
articles are posted each day, but you couldn’t find the number of posts per day, sep-
arately for each topic (at least not in one request). You’d be able to do that if you
could nest the date histogram facet under the terms facet.

Aggregations were born to remove this limit and allow you to get deeper insights from
your documents. For example, if you store your online shop logs in Elasticsearch, you
can use aggregations to find not only the best-selling products but also the best-selling
products in each country, the trends for each product in each country, and so on.

Figure 7.1 Example use case of aggregations: top tags for get-
together groups
Licensed to Thomas Snead <n.ordickan@gmail.com>

181Exploring your data with aggregations
In this chapter, we’ll first discuss the common traits of all aggregations: how you run
them and how they relate to the queries and filters you learned in previous chapters.
Then we’ll dive into the particularities of each type of aggregation, and in the end,
we’ll show you how to combine different aggregation types.

 Aggregations are divided in two main categories: metrics and bucket. Metrics aggre-
gations refer to the statistical analysis of a group of documents, resulting in metrics
such as the minimum value, maximum value, standard deviation, and much more. For
example, you can get the average price of items from an online shop or the number of
unique users logging on to it.

 Bucket aggregations divide matching documents into one or more containers
(buckets) and then give you the number of documents in each bucket. The terms
aggregation, which would give you the most popular tags in figure 7.1, makes a bucket
of documents for each tag and gives you the document count for each bucket.

 Within a bucket aggregation, you can nest other aggregations, making the sub-
aggregation run on each bucket of documents generated by the top-level aggregation.
You can see an example in figure 7.2.

Looking at the figure from the top down, you can see that if you’re using the terms
aggregation to get the most popular group tags, you can also get the average number
of members for groups matching each tag. You could also ask Elasticsearch to give
you, per tag, the number of groups created per year.

 As you may imagine, you can combine many types of aggregations in many ways.
To get a better view of the available options, we’ll go through metrics and bucket
aggregations and then discuss how you can combine them. But first, let’s see what’s
common for all types of aggregations: how to write them and how they relate to
your queries.

Top-level aggregation:

popular group tags

Sub-aggregation:

average number

of members

Sub-aggregation:

number of groups

created per year

open source

(7 docs)

3

2 3 3

2012 2013 2014

elasticsearch

(3 docs)

2

2 3

2013 2014

big data

(2 docs)

7

1 1

2012 2013 2014

Figure 7.2 The terms bucket aggregation allows you to nest other aggregations within it.
Licensed to Thomas Snead <n.ordickan@gmail.com>

182 CHAPTER 7 Exploring your data with aggregations

G
aggr

a

7.1 Understanding the anatomy of an aggregation
All aggregations, no matter their type, follow some rules:

■ You define them in the same JSON request as your queries, and you mark them
by the key aggregations, or aggs. You need to give each one a name and spec-
ify the type and the options specific to that type.

■ They run on the results of your query. Documents that don’t match your query
aren’t accounted for unless you include them with the global aggregation,
which is a bucket aggregation that will be covered later in this chapter.

■ You can further filter down the results of your query, without influencing aggre-
gations. To do that, we’ll show you how to use post filters. For example, when
searching for a keyword in an online shop, you can build statistics on all items
matching the keyword but use post filters to show only results that are in stock.

Let’s take a look at the popular terms aggregation, which you’ve already seen in the
intro to this chapter. The example use case was getting the most popular subjects
(tags) for existing groups of your get-together site. We’ll use this same terms aggrega-
tion to explore the rules that all aggregations must follow.

7.1.1 Structure of an aggregation request

In listing 7.1, you’ll run a terms aggregation that will give you the most frequent tags
in the get-together groups. The structure of this terms aggregation will apply to every
other aggregation.

NOTE For this chapter’s listing to work, you’ll need to index the sample data-
set from the code samples that come with the book, located at https://
github.com/dakrone/elasticsearch-in-action.

curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"aggregations" : {
 "top_tags" : {
 "terms" : {
 "field" : "tags.verbatim"
 }
 }
}}'
reply
[...]
 "hits" : {
 "total" : 5,
 "max_score" : 1.0,
 "hits" : [{
[...]
 "name": "Denver Clojure",
[...]
 "name": "Elasticsearch Denver",
[...]

Listing 7.1 Using the terms aggregation to get top tags

aggregations key indicates
that this is the aggregations
part of the request.

ive the
egation
 name.

Specify the aggregation
type terms.

The not_analyzed verbatim field is used
to have “big data” as a single term,
instead of “big” and “data” separately.

The list of results is there
anyway, as if you hit the _search
endpoint with no query.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

183Understanding the anatomy of an aggregation
 },
 "aggregations" : {
 "top_tags" : {
 "buckets" : [{
 "key" : "big data",
 "doc_count" : 3
 }, {
 "key" : "open source",
 "doc_count" : 3
 }, {
 "key" : "denver",
 "doc_count" : 2
[...]
 }
}

■ At the top level there’s the aggregations key, which can be shortened to aggs.
■ On the next level, you have to give the aggregation a name. You can see that

name in the reply. This is useful when you use multiple aggregations in the
same request, so you can easily see the meaning of each set of results.

■ Finally, you have to specify the aggregation type terms and the specific option.
In this case, you’ll have the field name.

The aggregation request from listing 7.1 hits the _search endpoint, just like the que-
ries you’ve seen in previous chapters. In fact, you also get back 10 group results. This
is all because no query was specified, which will effectively run the match_all query
you saw in chapter 4, so your aggregation will run on all the group documents. Run-
ning a different query will make the aggregation run through a different set of docu-
ments. Either way, you get 10 such results because size defaults to 10. As you saw in
chapters 2 and 4, you can change size from either the URI or the JSON payload of
your query.

Field data and aggregations
When you run a regular search, it goes fast because of the nature of the inverted
index: you have a limited number of terms to look for, and Elasticsearch will identify
documents containing those terms and return the results. An aggregation, on the
other hand, has to work with the terms of each document matching the query. It
needs a mapping between document IDs and terms—opposite of the inverted index,
which maps terms to documents.

By default, Elasticsearch un-inverts the inverted index into field data, as we explained
in chapter 6, section 6.10. The more terms it has to deal with, the more memory the
field data will use. That’s why you have to make sure you give Elasticsearch a large
enough heap, especially when you’re doing aggregations on large numbers of docu-
ments or if you’re analyzing fields and you have more than one term per document.
For not_analyzed fields, you can use doc values to have this un-inverted data struc-
ture built at index time and stored on disk. More details about field data and doc val-
ues can be found in chapter 6, section 6.10.

Aggregation results
begin here.

Aggregation name,
as specified

Each unique term is
an item in the bucket.

For each term, you
see how many times
it appeared.
Licensed to Thomas Snead <n.ordickan@gmail.com>

184 CHAPTER 7 Exploring your data with aggregations
7.1.2 Aggregations run on query results

Computing metrics over the whole dataset is just one of the possible use cases for
aggregations. Often you want to compute metrics in the context of a query. For
example, if you’re searching for groups in Denver, you probably want to see the most
popular tags for those groups only. As you’ll see in the next listing, this is the default
behavior for aggregations. Unlike in listing 7.1, where the implied query was match_all,
in the following listing you query for “Denver” in the location field, and aggregations
will only be about groups from Denver.

curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "match": {
 "location": "Denver"
 }
},
"aggregations" : {
 "top_tags" : {
 "terms" : {
 "field" : "tags.verbatim"
 }
 }
}}'
reply
[...]
 "hits" : {
 "total" : 2,
 "max_score" : 1.44856,
 "hits" : [{
[...]
 "name": "Denver Clojure",
[...]
 "name": "Elasticsearch Denver",
[...]
 },
 "aggregations" : {
 "top_tags" : {
 "buckets" : [{
 "key" : "denver",
 "doc_count" : 2
 }, {
 "key" : "big data",
 "doc_count" : 1
[...]

Recall from chapter 4 that you can use the from and size parameters of your query to
control the pagination of results. These parameters have no influence on aggrega-
tions because aggregations always run on all the documents matching a query.

Listing 7.2 Getting top tags for groups in Denver

In this query you
look only for groups
in Denver.

Fewer results than in
listing 7.1 because
you look only for
Denver groups

Tags are counted only for
Denver groups, so they
look different than in
listing 7.1.
Licensed to Thomas Snead <n.ordickan@gmail.com>

185Understanding the anatomy of an aggregation
 If you want to restrict query results more without also restricting aggregations, you
can use post filters. We’ll discuss post filters and the relationship between filters and
aggregations in general in the next section.

7.1.3 Filters and aggregations
In chapter 4 you saw that for most query types there’s a filter equivalent. Because fil-
ters don’t calculate scores and are cacheable, they’re faster than their query counter-
parts. You’ve also learned that you should wrap filters in a filtered query, like this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "filtered": {
 "filter": {
 "term": {
 "location": "denver"
 }
 }
 }
}}'

Using the filter this way is good for overall query performance because the filter runs
first. Then the query—which is typically more performance-intensive—runs only on
documents matching the filter. As far as aggregations are concerned, they run only
on documents matching the overall filtered query, as shown in figure 7.3.

 “Nothing new so far,” you might say. “The filtered query behaves like any other
query when it comes to aggregations,” and you’d be right. But there’s also another way
of running filters: by using a post filter, which will run after the query and independent
of the aggregation. The following request will give the same results as the previous fil-
tered query:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"post_filter": {
 "term": {
 "location": "denver"
 }
}}'

Documents

Filtered query

Filter Query Results

Aggregations
Aggregation

results

Figure 7.3 A filter wrapped in a filtered query runs first and restricts both results
and aggregations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

186 CHAPTER 7 Exploring your data with aggregations
As illustrated in figure 7.4, the post filter differs from the filter in the filtered query
in two ways:

■ Performance—The post filter runs after the query, making sure the query will
run on all documents, and the filter runs only on those documents matching
the query. The overall request is typically slower than the filtered query equiv-
alent, where the filter runs first.

■ Document set processed by aggregations—If a document doesn’t match the post fil-
ter, it will still be accounted for by aggregations.

Now that you understand the relationships between queries, filters, and aggregations,
as well as the overall structure of an aggregation request, we can dive deeper into
Aggregations Land and explore different aggregation types. We’ll start with metrics
aggregations and then go to bucket aggregations, and then we’ll discuss how to com-
bine them to get powerful insights from your data in real time.

7.2 Metrics aggregations
Metrics aggregations extract statistics from groups of documents, or, as we’ll explore
in section 7.4, buckets of documents coming from other aggregations.

 These statistics are typically done on numeric fields, such as the minimum or aver-
age price. You can get each such statistic separately or you can get them together via
the stats aggregation. More advanced statistics, such as the sum of squares or the
standard deviation, are available through the extended_stats aggregation.

 For both numeric and non-numeric fields you can get the number of unique val-
ues using the cardinality aggregation, which will be discussed in section 7.2.3.

7.2.1 Statistics

We’ll begin looking at metrics aggregations by getting some statistics on the number
of attendees for each event.

 From the code samples, you can see that event documents contain an array of
attendees. You can calculate the number of attendees at query time through a script,
which we’ll show in listing 7.3. We discussed scripting in chapter 3, when you used
scripts for updating documents. In general, with Elasticsearch queries you can build a

Documents

Query
Post

filter
Results

Aggregations
Aggregation

results

Figure 7.4 Post filter runs after the query and doesn’t affect aggregations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

187Metrics aggregations
script field, where you put a typically small piece of code that returns a value for each
document. In this case, the value will be the count of elements of the attendees array.

In the following listing, you’ll request statistics on the number of attendees for all
events. To get the number of attendees in the script, you’ll use doc['attendees']
.values to get the array of attendees. Adding the length property to that will return
their number.

URI=localhost:9200/get-together/event/_search

curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_stats": {
 "stats": {
 "script": "doc['"'attendees'"'].values.length"
 }
 }
}}'
reply
[...]
 "aggregations" : {
 "attendees_stats" : {
 "count" : 15,
 "min" : 3.0,
 "max" : 5.0,
 "avg" : 3.8666666666666667,
 "sum" : 58.0
 }
 }
}

The flexibility of scripts comes with a price
Scripts are flexible when it comes to querying, but you have to be aware of the cave-
ats in terms of performance and security.

Even though most aggregation types allow you to use them, scripts slow down aggre-
gations because they have to be run on every document. To avoid the need of running
a script, you can do the calculation at index time. In this case, you can extract the
number of attendees for every event and add it to a separate field before indexing it.
We’ll talk more about performance in chapter 10.

In most Elasticsearch deployments, the user specifies a query string, and it’s up to
the server-side application to construct the query out of it. But if you allow users
to specify any kind of query, including scripts, someone might exploit this and run
malicious code. That’s why, depending on your Elasticsearch version, running scripts
inline like in listing 7.3 (called dynamic scripting) is disabled. To enable it, set
script.disable_dynamic: false in elasticsearch.yml.

Listing 7.3 Getting stats for the number of event attendees

When you care only about
aggregations, you shouldn’t ask
for any result, just their count.

Script to generate the
number of attendees.
Use field instead of script
to point to a real field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

188 CHAPTER 7 Exploring your data with aggregations
You can see that you get back the minimum number of attendees per event, as well as
the maximum, the sum, and the average. You also get the number of documents these
statistics were computed on.

 If you need only one of those statistics, you can get it separately. For example,
you’ll calculate the average number of attendees per event through the avg aggrega-
tion in the next listing.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_avg": {
 "avg": {
 "script": "doc['"'attendees'"'].values.length"
 }
 }
}}'
reply
[...]
 "aggregations" : {
 "attendees_avg" : {
 "value" : 3.8666666666666667
 }
 }
}

Similar to the avg aggregation, you can get the other metrics through the min, max,
sum, and value_count aggregations. You’d have to replace avg from listing 7.4 with
the needed aggregation name. The advantage of separate statistics is that Elastic-
search won’t spend time computing metrics that you don’t need.

7.2.2 Advanced statistics

In addition to statistics gathered by the stats aggregation, you can get the sum of
squares, variance, and standard deviation of your numeric field by running the
extended_stats aggregation, as shown in the next listing.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_extended_stats": {
 "extended_stats": {
 "script": "doc['"'attendees'"'].values.length"
 }
 }
}}'
reply
 "aggregations" : {
 "attendees_extended_stats" : {

Listing 7.4 Getting the average number of event attendees

Listing 7.5 Getting extended statistics on the number of attendees
Licensed to Thomas Snead <n.ordickan@gmail.com>

189Metrics aggregations
 "count" : 15,
 "min" : 3.0,
 "max" : 5.0,
 "avg" : 3.8666666666666667,
 "sum" : 58.0,
 "sum_of_squares" : 230.0,
 "variance" : 0.38222222222222135,
 "std_deviation" : 0.6182412330330462
 }
 }

All these statistics are calculated by looking at all the values in the document set
matching the query, so they’re 100% accurate all the time. Next we’ll look at some sta-
tistics that use approximation algorithms, trading some of the accuracy for speed and
less memory consumption.

7.2.3 Approximate statistics

Some statistics can be calculated with good precision—though not 100%—by looking
at some of the values from your documents. This will limit both their execution time
and their memory consumption.

 Here we’ll look at how to get two types of such statistics from Elasticsearch: percen-
tiles and cardinality. Percentiles are values below which you can find x% of the total val-
ues, where x is the given percentile. This is useful, for example, when you have an
online shop: you log the value of each shopping cart and you want to see in which
price range are most shopping carts. Perhaps most of your users only buy an item or
two, but the upper 10% buy a lot of items and generate most of your revenue.

 Cardinality is the number of unique values in a field. This is useful, for example,
when you want the number of unique IP addresses accessing your website.

PERCENTILES

For percentiles, think about the number of attendees for events once again and deter-
mine the maximum number of attendees you’ll consider normal and the number
you’ll consider high. In listing 7.6, you’ll calculate the 80th percentile and the 99th.
You’ll consider numbers under the 80th to be normal and numbers under the 99th
high, and you’ll ignore the upper 1%, because they’re exceptionally high.

 To accomplish this, you’ll use the percentiles aggregation, and you’ll set the per-
cents array to 80 and 99 in order to get these specific percentiles.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_percentiles": {
 "percentiles": {
 "script": "doc['"'attendees'"'].values.length",
 "percents": [80, 99]
 }

Listing 7.6 Getting the 80th and the 99th percentiles from the number of attendees
Licensed to Thomas Snead <n.ordickan@gmail.com>

190 CHAPTER 7 Exploring your data with aggregations
 }
}}'
reply
 "aggregations" : {
 "attendees_percentiles" : {
 "values" : {
 "80.0" : 4.0,
 "99.0" : 5.0
 }
 }
 }

For small data sets like the code samples, you have 100% accuracy, but this may not
happen with large data sets in production. With the default settings, you have over
99.9% accuracy for most data sets for most percentiles. The specific percentile mat-
ters, because accuracy is at its worst for the 50th percentile, and as you go toward 0 or
100 it gets better and better.

 You can trade memory for accuracy by increasing the compression parameter
from the default 100. Memory consumption increases proportionally to the compres-
sion, which in turn controls how many values are taken into account when approxi-
mating percentiles.

 There’s also a percentile_ranks aggregation that allows you to do the opposite—
specify a set of values—and you’ll get back the corresponding percentage of docu-
ments having up to those values:

% curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_percentile_ranks": {
 "percentile_ranks": {
 "script": "doc['"'attendees'"'].values.length",
 "values": [4, 5]
 }
 }
}}'

CARDINALITY

For cardinality, let’s imagine you want the number of unique members of your get-
together site. The following listing shows how to do that with the cardinality
aggregation.

URI=localhost:9200/get-together/group/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "members_cardinality": {
 "cardinality": {
 "field": "members"
 }
 }

Listing 7.7 Getting the number of unique members through the cardinality
aggregation

80% of values
are at most 4.

99% of values
are at most 5.
Licensed to Thomas Snead <n.ordickan@gmail.com>

191Metrics aggregations
}}'
reply
 "aggregations" : {
 "members_cardinality" : {
 "value" : 8
 }
 }

Like the percentiles aggregation, the cardinality aggregation is approximate. To
understand the benefit of such approximation algorithms, let’s take a closer look at
the alternative. Before the cardinality aggregation was introduced in version 1.1.0,
the common way to get the cardinality of a field was by running the terms aggregation
you saw in section 7.1. Because the terms aggregation will get the counts of each term
for top N terms, where N is the configurable size parameter, if you specify a size
large enough, you could get all the unique terms back. Counting them will give you
the cardinality.

 Unfortunately, this approach only works for fields with relatively low cardinality
and a low number of documents. Otherwise, running a terms aggregation with a huge
size requires a lot of resources:

■ Memory—All the unique terms need to be loaded in memory in order to be
counted.

■ CPU—Those terms have to be returned in order; by default the order is on how
many times each term occurs.

■ Network—From each shard, the large array of sorted unique terms has to be
transferred to the node that received the client request. That node also has to
merge per-shard arrays into one big array and transfer it back to the client.

This is where approximation algorithms come into play. The cardinality field works
with an algorithm called HyperLogLog++ that hashes values from the field you want
to examine and uses the hashes to approximate the cardinality. It loads only some of
those hashes into memory at once, so the memory usage will be constant no matter
how many terms you have.

NOTE For more details on the HyperLogLog++ algorithm, have a look at
the original paper from Google: http://static.googleusercontent.com/external
_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/
40671.pdf.

MEMORY AND CARDINALITY

We said that the memory usage of the cardinality aggregation is constant, but how
large would that constant be? You can configure it through the precision_threshold
parameter. The higher the threshold, the more precise the results, but more mem-
ory is consumed. If you run the cardinality aggregation on its own, it will take
about precision_threshold times 8 bytes of memory for each shard that gets hit by
the query.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/40671.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/40671.pdf

192 CHAPTER 7 Exploring your data with aggregations
 The cardinality aggregation, like all other aggregations, can be nested under a
bucket aggregation. When that happens, the memory usage is further multiplied by
the number of buckets generated by the parent aggregations.

TIP For most cases, the default precision_threshold will work well, because
it provides a good tradeoff between memory usage and accuracy, and it
adjusts itself depending on the number of buckets.

Next, we’ll look at the choice of multi-bucket aggregations. But before we go there,
table 7.1 gives you a quick overview of each metrics aggregation and the typical
use case.

7.3 Multi-bucket aggregations
As you saw in the previous section, metrics aggregations are about taking all your
documents and generating one or more numbers that describe them. Multi-bucket
aggregations are about taking those documents and putting them into buckets—like
the group of documents matching each tag. Then, for each bucket, you’ll get one or
more numbers that describe the bucket, such as counting the number of groups for
each tag.

 So far you’ve run metrics aggregations on all documents matching the query. You
can think of those documents as one big bucket. Other aggregations generate such
buckets: for example, if you’re indexing logs and have a country code field, you can
do a terms aggregation on it to create one bucket of documents for each country.
As you’ll see in section 7.4, you can nest aggregations: for example, a cardinality

Table 7.1 Metrics aggregations and typical use cases

Aggregation type Example use case

stats Same product sold in multiple stores. Gather statistics on the price: how
many stores have it and what the minimum, maximum, and average
prices are.

individual stats (min, max,
sum, avg, value_count)

Same product sold in multiple stores. Show “prices starting from” and
then the minimum price.

extended_stats Documents contain results from a personality test. Gather statistics
from that group of people, such as the variance and the standard
deviation.

percentiles Access times on your website: what the usual delays are and how long
the longest response times are.

percentile_ranks Checking if you meet SLAs: if 99% of requests have to be served under
100ms, you can check what's the actual percentage.

cardinality Number of unique IP addresses accessing your service.
Licensed to Thomas Snead <n.ordickan@gmail.com>

193Multi-bucket aggregations
aggregation could run on the buckets created by the terms aggregation to give you
the number of unique visitors per country.

 For now, let’s see what kinds of multi-bucket aggregations are available and where
they’re typically useful:

■ Terms aggregations let you figure out the frequency of each term in your docu-
ments. There’s the terms aggregation, which you’ve seen a couple of times
already, that gives you back the number of times each term appears. It’s use-
ful for figuring out things like frequent posters on a blog or popular tags.
There’s also the significant_terms aggregation, which gives you back the
difference between the occurrence of a term in the whole index and its occur-
rence in your query results. This is useful for suggesting terms that are signif-
icant for the search context, like “elasticsearch” would be for the context of
“search engine.”

■ Range aggregations create buckets based on how documents fall into which
numerical, date, or IP address range. This is useful when analyzing data where
the user has fixed expectations. For example, if someone is searching for a lap-
top in an online shop, you know the price ranges that are most popular.

■ Histogram aggregations, either numerical or date, are similar to range aggrega-
tions, but instead of requiring you to define each range, you have to define an
interval, and Elasticsearch will build buckets based on that interval. This is use-
ful when you don’t know where the user is likely to look. For example, you
could show a chart of how many events occur each month.

■ Nested, reverse nested, and children aggregations allow you to perform aggregations
across document relationships. We’ll discuss them in chapter 8 when we talk
about nested and parent-child relations.

■ Geo distance and geohash grid aggregations allow you to create buckets based on
geolocation. We’ll show them in appendix A, which is focused on geo search.

Figure 7.5 shows an overview of the types of multi-bucket aggregations we’ll discuss here.
 Next, let’s zoom into each of these multi-bucket aggregations and see how you can

use them.

7.3.1 Terms aggregations

We first looked at the terms aggregation in section 7.1 as an example of how all aggre-
gations work. The typical use case is to get the top frequent X, where X would be a field
in your document, like the name of a user, a tag, or a category. Because the terms
aggregation counts every term and not every field value, you’ll normally run this
aggregation on a non-analyzed field, because you want “big data” to be counted once
and not once for “big” and once for “data.”
Licensed to Thomas Snead <n.ordickan@gmail.com>

194 CHAPTER 7 Exploring your data with aggregations
You could use the terms aggregation to extract the
most frequent terms from an analyzed field, like
the description of an event. You can use this infor-
mation to generate a word cloud, like the one in
figure 7.6. Just make sure you have enough mem-
ory for loading all the fields in memory if you
have many documents or the documents contain
many terms.

 By default, the order of terms is by their count,
descending, which fits all the top frequent X use
cases. But you can order terms ascending, or by
other criteria, such as the term name itself. The following listing shows how to list the
group tags ordered alphabetically by using the order property.

URI=localhost:9200/get-together/group/_search
curl "$URI?pretty&search_type=count" -d '{

Listing 7.8 Ordering tag buckets by name

Terms aggregation:

most frequent tags

Range aggregation:

groups grouped by number of members

Date histogram aggregation:

number of groups created each month

Significant terms aggregation:

tags appearing more often when searching

for “search engine” than they appear overall

solr

open source(10)

big data(8) elasticsearch(7)

elasticsearch

lucene

33%

more

25%

more

19%

more

<10

10−20

>20

Jun Jul Aug Sept

7 8 4 9

Figure 7.5 Major types of multi-bucket aggregations

introduction

elasticsearch hadoop

use-case
talk

Figure 7.6 A terms aggregation
can be used to get term frequencies
and generate a word cloud.
Licensed to Thomas Snead <n.ordickan@gmail.com>

195Multi-bucket aggregations
"aggregations": {
 "tags": {
 "terms": {
 "field": "tags.verbatim",
 "order": {
 "_term": "asc"
 }
 }
 }
}}'
reply
 "aggregations" : {
 "tags" : {
 "buckets" : [{
 "key" : "apache lucene",
 "doc_count" : 1
 }, {
 "key" : "big data",
 "doc_count" : 3
 }, {
 "key" : "clojure",
 "doc_count" : 1

If you’re nesting a metric aggregation under your terms aggregation, you can order
terms by the metric, too. For example, you could use the average metric aggregation
under your tags aggregation from listing 7.8 to get the average number of group
members per tag. And you can order tags by the number of members by referring
your metric aggregation name, like avg_members: desc (instead of _term: asc as in
listing 7.8).

WHICH TERMS TO INCLUDE IN THE REPLY

By default, the terms aggregation will return only the top 10 terms by the order you
selected. You can, however, change that number though the size parameter. Setting
size to 0 will get you all the terms, but it’s dangerous to use with a high-cardinality
field, because returning a very large result is CPU-intensive to sort and might saturate
your network.

 To get back the top 10 terms—or the number of terms you configure with size—
Elasticsearch has to get a number of terms (configurable through shard_size) from
each shard and aggregate the results. The process is shown in figure 7.7, with shard_
size and size set to 2 for clarity.

 This mechanism implies that you might get inaccurate counters for some terms if
those terms don’t make it to the top of each individual shard. This can even result in
missing terms, like in figure 7.7 where lucene, with a total value of 7, isn’t returned
in the top 2 overall tags because it didn’t make the top 2 for each shard.

 You can get more accurate results by setting a large shard_size, as shown in fig-
ure 7.8. But this will make aggregations more expensive (especially if you nest them)
because there are more buckets that need to be kept in memory.

Criterion to sort on (the
term for that bucket)
and order (ascending)
Licensed to Thomas Snead <n.ordickan@gmail.com>

196 CHAPTER 7 Exploring your data with aggregations
Node 1 Node 2

open source: 6

big data: 5

lucene: 4

Application

Terms aggregation:

field=tags

size=2

shard_size=2

tags:

big data: 9

open source: 6

The term result “lucene: 7” is

missing, because only 2 terms

(shard_size=2) are returned per shard.

tags:

open source: 6

big data: 5

elasticsearch: 5

big data: 4

lucene: 3

tags:

elasticsearch: 5

big data: 4

Figure 7.7 Sometimes the overall top X is inaccurate, because only the top X terms
are returned per shard.

Node 1 Node 2

open source: 6

big data: 5

lucene: 4

Application

Terms aggregation:

field=tags

size=2

shard_size=3

tags:

big data: 9

lucene: 7

Trade performance for accuracy

by setting larger shard_size

tags:

open source: 6

big data: 5

lucene: 4

elasticsearch: 5

big data: 4

lucene: 3

tags:

elasticsearch: 5

big data: 4

lucene: 3

Figure 7.8 Reducing inaccuracies by increasing shard_size
Licensed to Thomas Snead <n.ordickan@gmail.com>

197Multi-bucket aggregations
To get an idea of how accurate results are, you can check the values at the beginning
of the aggregation response:

 "tags" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 6,

The first number is the worst-case scenario error margin. For example, if the mini-
mum count for a term returned by a shard is 5, it could be that a term occurring four
times in that shard has been missed. If that term should have appeared in the final
results, that’s a worst-case error of 4. The total of these numbers for all shards makes
up doc_count_error_upper_bound. For our code samples, that number is always 0,
because we have only one shard—the top terms for that shard are the same as the
global top terms.

 The second number is the total count of the terms that didn’t make the top.
 You can get a doc_count_error_upper_bound value for each term by setting

show_term_doc_count_error to true. This will take the worst-case scenario error per
term: for example if “big data” is returned by a shard, you know that it’s the exact
value. But if another shard doesn’t return “big data” at all, the worst-case scenario is
that “big data” actually exists with a value just below the last returned term. Adding up
these error numbers for shards not returning that term make up doc_count_error
_upper_bound per term.

 At the other end of the accuracy spectrum, you could consider terms with low fre-
quency irrelevant and exclude them from the result set entirely. This is especially use-
ful when you sort terms by something other than frequency, which makes it likely that
low-frequency terms will appear, but you don’t want to pollute the results with irrele-
vant results like typos. To do that, you’ll need to change the min_doc_count setting
from the default value of 1. If you want to cut these low-frequency terms at the shard
level, you use shard_min_doc_count.

 Finally, you can include and exclude specific terms from the result. You’d do that
by using the include and exclude options and providing regular expressions as val-
ues. Using include alone will include only terms matching the pattern; using
exclude alone will include terms that don’t match. Using both will have exclude
take precedence: included terms will match the include pattern but won’t match
the exclude pattern.

 The following listing shows how to only return counters for tags containing “search.”

URI=localhost:9200/get-together/group/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "tags": {
 "terms": {
 "field": "tags.verbatim",
 "include": ".*search.*"

Listing 7.9 Creating buckets only for terms containing “search”
Licensed to Thomas Snead <n.ordickan@gmail.com>

198 CHAPTER 7 Exploring your data with aggregations
 }
 }
}}'
reply
 "aggregations" : {
 "tags" : {
 "buckets" : [{
 "key" : "elasticsearch",
 "doc_count" : 2
 }, {
 "key" : "enterprise search",
 "doc_count" : 1

SIGNIFICANT TERMS

The significant_terms aggregation is useful if you want to see which terms have
higher frequencies than normal in your current search results. Let’s take the example
of get-together groups: in all the groups out there, the term clojure may not appear
frequently enough to count. Let’s assume that it appears 10 times out of 1,000,000
terms (0.0001%). If you restrict your search for Denver, let’s say it appears 7 times out
of 10,000 terms (0.007%). The percentage is significantly higher than before and indi-
cates a strong Clojure community in Denver, compared to the rest of the search area.
It doesn’t matter that other terms such as programming or devops have a much higher
absolute frequency.

 The significant_terms aggregation is much like the terms aggregation in the
sense that it’s counting terms. But the resulting buckets are ordered by a score, which
represents the difference in percentage between the foreground documents (that
0.007% in the previous example) and the background documents (0.0001%). The
foreground documents are those matching your query, and the background docu-
ments are all the documents from the index.

 In the following listing, you’ll try to find out which users of the get-together site
have a similar preference to Lee for events. To do that, you’ll query for events where

Collect mode
By default, Elasticsearch does all aggregations in a single pass. For example, if you
had a terms aggregation and a cardinality aggregation nested in it, Elasticsearch
would make a bucket for each term, calculate the cardinality for each bucket, sort
those buckets, and return the top X.

This works well for most use cases, but it will take lots of time and memory if you
have lots of buckets and lots of sub-aggregations, especially if a sub-aggregation is
also a multi-bucket aggregation with lots of buckets. In such cases, a two-pass
approach will be better: first create the buckets of the top-level aggregation, sort and
cache the top X, and then calculate sub-aggregations on only those top X.

You can control which approach Elasticsearch uses by setting collect_mode. The
default is depth_first, and the two-pass approach is breadth_first.
Licensed to Thomas Snead <n.ordickan@gmail.com>

199Multi-bucket aggregations

T
a

par
in

tw
Lee attends and use the significant_terms aggregation to see which event attendees
participate in more, compared to the overall set of events they attend.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"query": {
 "match": {
 "attendees": "lee"
 }
},
"aggregations": {
 "significant_attendees": {
 "significant_terms": {
 "field": "attendees",
 "min_doc_count": 2,
 "exclude": "lee"
 }
 }
}}'
reply
 "aggregations" : {
 "significant_attendees" : {
 "doc_count" : 5,
 "buckets" : [{
 "key" : "greg",
 "doc_count" : 3,
 "score" : 1.7999999999999998,
 "bg_count" : 3
 }, {
 "key" : "mike",
 "doc_count" : 2,
 "score" : 1.2000000000000002,
 "bg_count" : 2
 }, {
 "key" : "daniel",
 "doc_count" : 2,
 "score" : 0.6666666666666667,
 "bg_count" : 3

As you might have guessed from the listing, the significant_terms aggregation has the
same size, shard_size, min_doc_count, shard_min_doc_count, include, and exclude
options as the terms aggregation, which lets you control the terms you get back. In addi-
tion to those, it allows you to change the background documents from all the documents
in the index to only those matching a defined filter in the background_filter parame-
ter. For example, you may know that Lee participates only in technology events, so you
can filter those to make sure that events irrelevant to him aren’t taken into account.

 Both the terms and significant_terms aggregations work well for string fields.
For numeric fields, range and histogram aggregations are more relevant, and we’ll
look at them next.

Listing 7.10 Finding attendees attending similar events to Lee

Foreground documents
are events Lee attends.

You need attendees who
appear more in these
events than overall.

ake only
ttendees

who
ticipated
 at least

o events.
Exclude Lee from analyzed
terms; he has the same
taste as himself.

Total number of events
Lee attended is 5

Greg has similar taste: he
attended three events in
total, all of them with Lee.

Mike is next, with two
events in total, all of
them with Lee.

Daniel is last; he went to
three events, but only
two of them with Lee.
Licensed to Thomas Snead <n.ordickan@gmail.com>

200 CHAPTER 7 Exploring your data with aggregations
7.3.2 Range aggregations

The terms aggregation is most often used with strings, but it works with numeric values,
too. This is useful when you have low cardinality, like when you want to give counts on
how many laptops have two years of warranty, how many have three, and so on.

 With high-cardinality fields, such as ages or prices, you’re most likely looking for
ranges. For example, you may want to know how many of your users are between 18
and 39, how many are between 40 and 60, and so on. You can still do that with the
terms aggregation, but it’s going to be tedious: in your application, you’d have to add
up counters for ages 18, 19, and so on until you get to 39 to get the first bucket. And if
you want to add sub-aggregations, like the ones you’ll see later in this chapter, things
will get even more complicated.

 To solve this problem for numerical values, you have
the range aggregation. As the name suggests, you give the
numerical ranges you want, and it will count the docu-
ments with values that fall into each bucket. You can use
those counters to represent the data in a graphical way—
for example, with a pie chart, as shown in figure 7.9.

 Recall from chapter 3 that date strings are stored as type
long in Elasticsearch, representing the UNIX time in milli-
seconds. To work with date ranges, you have a variant of
the range aggregation called the date_range aggregation.

RANGE AGGREGATION

Let’s get back to our get-together site example and do a
breakdown of events by their number of attendees. You’ll
do it with the range aggregation and give it an array of
ranges. The thing to keep in mind here is that the mini-
mum value from the range (the key from) is included in the bucket, whereas the max-
imum value (to) is excluded. In listing 7.11, you’ll have three categories:

■ Events with fewer than four members
■ Events with at least four members but fewer than six
■ Events with at least six members

NOTE Ranges don’t have to be adjacent; they can be separated or they can
overlap. In most cases it makes sense to cover all values, but you don’t need to.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "attendees_breakdown": {
 "range": {
 "script": "doc['"'attendees'"'].values.length",

Listing 7.11 Using a range aggregation to divide events by the number of attendees

18–39

>60

40–60

Figure 7.9 range
aggregations give you
counts of documents for
each range. This is good
for pie charts.

Use a script to get
the number, like in
previous examples.
Licensed to Thomas Snead <n.ordickan@gmail.com>

201Multi-bucket aggregations
 "ranges": [
 { "to": 4 },
 { "from": 4, "to": 6 },
 { "from": 6 }
]
 }
 }
}}'
reply
 "aggregations" : {
 "attendees_breakdown" : {
 "buckets" : [{
 "key" : "*-4.0",
 "to" : 4.0,
 "to_as_string" : "4.0",
 "doc_count" : 4
 }, {
 "key" : "4.0-6.0",
 "from" : 4.0,
 "from_as_string" : "4.0",
 "to" : 6.0,
 "to_as_string" : "6.0",
 "doc_count" : 11
 }, {
 "key" : "6.0-*",
 "from" : 6.0,
 "from_as_string" : "6.0",
 "doc_count" : 0

You can see from the listing that you don’t have to specify both from and to for every
range in the aggregation. Omitting one of these parameters will remove the respective
boundary, and this enables you to search for all events with fewer than four members
or with at least six.

DATE RANGE AGGREGATION

As you might imagine, the date_range aggregation works just like the range aggrega-
tion, except you put date strings in your range definitions. And because of that, you
should define the date format so Elasticsearch will know how to translate the string
you give it into the numerical UNIX time, which is how date fields are stored.

 In the following listing, you’ll divide events into two categories: before July 2013
and starting with July 2013. You can use a similar approach to count future events and
past events, for example.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "dates_breakdown": {
 "date_range": {
 "field": "date",
 "format": "YYYY.MM",

Listing 7.12 Using a date range aggregation to divide events by scheduled date

The ranges to
use for counting

For each range, you
get the document
count…

even if that
value is 0.

Define a format to
parse the date
strings.
Licensed to Thomas Snead <n.ordickan@gmail.com>

202 CHAPTER 7 Exploring your data with aggregations
 "ranges": [
 { "to": "2013.07" },
 { "from": "2013.07"}
]
 }
 }
}}'
reply
 "aggregations" : {
 "dates_breakdown" : {
 "buckets" : [{
 "key" : "*-2013.07",
 "to" : 1.3726368E12,
 "to_as_string" : "2013.07",
 "doc_count" : 8
 }, {
 "key" : "2013.07-*",
 "from" : 1.3726368E12,
 "from_as_string" : "2013.07",
 "doc_count" : 7

If the value of the format field looks familiar, it’s because it’s the same Joda Time
annotation that you saw in chapter 3 when you defined date formats in the mapping.
For the complete syntax, you can look at the DateTimeFormat documentation: http://
joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html.

7.3.3 Histogram aggregations

For dealing with numeric ranges, you also have histogram aggregations. These are
much like the range aggregations you just saw, but instead of manually defining each
range, you’d define a fixed interval, and Elasticsearch would build the ranges for you.
For example, if you want age groups from people documents, you can define an inter-
val of 10 (years) and you’ll get buckets like 0–10 (excluding 10), 10–20 (excluding
20), and so on.

 Like the range aggregation, the histogram aggregation has a variant that works
with dates, called the date_histogram aggregation. This is useful, for example, when
building histogram charts of how many emails were sent on a mailing list each day.

HISTOGRAM AGGREGATION

Running a histogram aggregation is similar to running a range aggregation. You just
replace the ranges array with an interval, and Elasticsearch will build ranges starting
with the minimum value, adding the interval until the maximum value is included.
For example, in the following listing, you specify an interval of 1 and show how
many events have three attendees, how many have four, and how many have five.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {

Listing 7.13 Histogram showing the number of events for each number of attendees

Ranges are defined
in date strings, too.

For each range, you
get the document
count.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

203Multi-bucket aggregations
 "attendees_histogram": {
 "histogram": {
 "script": "doc['"'attendees'"'].values.length",
 "interval": 1
 }
 }
}}'
reply
 "aggregations" : {
 "attendees_histogram" : {
 "buckets" : [{
 "key" : 3,
 "doc_count" : 4
 }, {
 "key" : 4,
 "doc_count" : 9
 }, {
 "key" : 5,
 "doc_count" : 2

Like the terms aggregation, the histogram aggregation lets you specify a min_doc
_count value, which is helpful if you want buckets with few documents to be ignored.
min_doc_count is also useful if you want to show empty buckets. By default, if there’s
an interval between the minimum and maximum values that has no documents, that
interval will be omitted altogether. Set min_doc_count to 0 and those intervals will still
appear with a document count of 0.

DATE HISTOGRAM AGGREGATION

As you might expect, you’d use the date_histogram aggregation like the histogram
one, but you’d insert a date in the interval field. That date would be specified in the
same Joda Time annotation as the date_range aggregation, with values such as 1M or
1.5h. For example, the following listing gives the breakdown of events happening in
each month.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "event_dates": {
 "date_histogram": {
 "field": "date",
 "interval": "1M"
 }
 }
}}'
reply
 "aggregations" : {
 "event_dates" : {
 "buckets" : [{
 "key_as_string" : "2013-02-01T00:00",
 "key" : 1359676800000,

Listing 7.14 Histogram of events per month

interval used for building
ranges. Here you want to
see every value.

Keys show the from
value of the range;
“to” is key+interval.

Next “from” is the
previous “to”.

interval here is
specified as a
date string.

key_as_string is more
useful here, because it’s
a more human-readable
date format.
Licensed to Thomas Snead <n.ordickan@gmail.com>

204 CHAPTER 7 Exploring your data with aggregations
 "doc_count" : 1
 }, {
 "key_as_string" : "2013-03-01T00:00",
 "key" : 1362096000000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2013-04-01T00:00",
 "key" : 1364774400000,
 "doc_count" : 2
[…]

Like the regular histogram aggregation, you can use the min_doc_count option to
either show empty buckets or omit buckets containing just a few documents.

 You probably noticed that the date_histogram aggregation has two things in com-
mon with all the other multi-bucket aggregations:

■ It counts documents having certain terms.
■ It creates buckets of documents falling into each category.

The buckets themselves are useful only when you nest other aggregations under a
multi-bucket aggregation. This allows you to have deeper insights into your data, and
we’ll look at nesting aggregations in the next section. First, take time to look at table 7.2,
which gives you a quick overview of the multi-bucket aggregations and what they’re
typically used for.

The list isn’t exhaustive, but it does include the most important aggregation types and
their options. You can check the documentation1 for a complete list. Also, geo aggrega-
tions are dealt with in appendix A, and nested and children aggregations in chapter 8.

7.4 Nesting aggregations
The real power of aggregations is the fact that you can combine them. For example, if
you have a blog and you record each access to your posts, you can use the terms

Table 7.2 Multi-bucket aggregations and typical use cases

Aggregation type Example use case

terms Show top tags on a blogging site; hot topics this week on a news site.

significant_terms Identify new technology trends by looking at what’s used/downloaded a
lot this month compared to overall.

range and
date_range

Show entry-level, medium-priced, and expensive laptops. Show archived
events, events this week, upcoming events.

histogram and
date_histogram

Show distributions: how much people of each age exercise. Or show
trends: items bought each day.

1 www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations.html
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/master/search-aggregations.html

205Nesting aggregations
aggregation to show the most-viewed posts. But you can also nest a cardinality aggre-
gation under this terms aggregation and show the number of unique visitors for each
post; you can even change the sorting in the terms aggregation to show posts with the
most unique visitors.

 As you may imagine, nesting aggregations opens a whole new range of possibilities
for exploring data. Nesting is the main reason aggregations emerged in Elasticsearch
as a replacement for facets, because facets couldn’t be combined.

 Multi-bucket aggregations are typically the point where you start nesting. For
example, the terms aggregation allows you to show the top tags for get-together
groups; this means you’ll have a bucket of documents for each tag. You can use sub-
aggregations to show more metrics for each bucket. For example, you can show
how many groups are being created each month, for each tag, as illustrated in
figure 7.10.

Later in this section, we’ll discuss one particular use case for nesting: result grouping,
which, unlike a regular search that gives you the top N results by relevance, gives you
the top N results for each bucket of documents generated by the parent aggregation.
Say you have an online shop and someone searches for “Windows.” Normally, rele-
vance-sorted results will show many versions of the Windows operating system first.
This may not be the best user experience, because at this point it’s not 100% clear
whether the user is looking to buy a Windows operating system, some software built
for Windows, or some hardware that works with Windows. This is where result group-
ing, illustrated in figure 7.11, comes in handy: you can show the top three results from
each of the operating systems, software, and hardware categories and give the user a
broader range of results. The user may also want to click on the category name to nar-
row the search to that category only.

Top-level aggregation:

type: terms

field: tags

Sub-aggregation:

type: date histogram

field: date

elasticsearch

(7 docs)

2 3 3

2012 2013 2014

lucene

(5 docs)

2 3

2013 2014

hadoop

(2 docs)

1 1

2012 2013 2014

Figure 7.10 Nesting a date histogram aggregation under a terms aggregation
Licensed to Thomas Snead <n.ordickan@gmail.com>

206 CHAPTER 7 Exploring your data with aggregations
In Elasticsearch, you’ll be able to get result grouping by using a special aggregation
called top_hits. It retrieves the top N results, sorted by score or a criterion of your
choice, for each bucket of a parent aggregation. That parent aggregation can be a
terms aggregation that’s running on the category field, as suggested in the online
shop example of figure 7.11; we’ll go over this special aggregation in the next section.

 The last nesting use case we’ll talk about is controlling the document set on which
your aggregations run. For example, regardless of the query, you might want to show
the top tags for get-together groups created in the last year. To do this, you’d use the
filter aggregation, which creates a bucket of documents that match the provided fil-
ter, in which you can nest other aggregations.

7.4.1 Nesting multi-bucket aggregations

To nest an aggregation within another one, you just have to use the aggregations or
aggs key on the same level as the parent aggregation type and then put the sub-
aggregation definition as the value. For multi-bucket aggregations, this can be done
indefinitely. For example, in the following listing you’ll use the terms aggregation to
show the top tags. For each tag, you’ll use the date_histogram aggregation to show
how many groups were created each month, for each tag. Finally, for each bucket of
such groups, you’ll use the range aggregation to show how many groups have fewer
than three members and how many have at least three.

URI=localhost:9200/get-together/group/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 },
 "aggregations": {

Listing 7.15 Nesting multi-bucket aggregations three times

Top-level aggregation:

type: terms

field: category

Sub-aggregation:

type: top hits

Operating

systems

Windows 8.1 Asus A

(all running Windows)

Corel XX

Windows 7 HP 650 McAffee ’14

Windows 8 Dell XPS Office 2014

Laptops Applications

Figure 7.11 Nesting the top_hits aggregation under a terms aggregation to get result grouping

Typical terms aggregation,
giving top tags

Within it, use the
aggregation key to define
a sub-aggregation.
Licensed to Thomas Snead <n.ordickan@gmail.com>

207Nesting aggregations
 "groups_per_month": {
 "date_histogram": {
 "field": "created_on",
 "interval": "1M"
 },
 "aggregations": {
 "number_of_members": {
 "range": {
 "script": "doc['"'members'"'].values.length",
 "ranges": [
 { "to": 3 },
 { "from": 3 }
]
 }
 }
 }
 }
 }
 }
}}'
reply
 "aggregations" : {
 "top_tags" : {
 "buckets" : [{
 "key" : "big data",
 "doc_count" : 3,
 "groups_per_month" : {
 "buckets" : [{
 "key_as_string" : "2010-04-01",
 "key" : 1270080000000,
 "doc_count" : 1,
 "number_of_members" : {
 "buckets" : [{
 "key" : "*-3.0",
 "to" : 3.0,
 "to_as_string" : "3.0",
 "doc_count" : 1
 }, {
 "key" : "3.0-*",
 "from" : 3.0,
 "from_as_string" : "3.0",
 "doc_count" : 0
 }]
 }
 }, {
 "key_as_string" : "2012-08-01",
[...]

You can always nest a metrics aggregation within a bucket aggregation. For example, if
you wanted the average number of group members instead of the 0–2 and 3+ ranges
that you had in the previous listing, you could use the avg or stats aggregation.

 One particular type of aggregation we promised to cover in the last section is
top_hits. It will get you the top N results, sorted by the criteria you like, for each

This date_histogram sub-
aggregation will run once
for every top tag,

Define a child aggregation
for the date histogram, too.

The range sub-
aggregation will

run for every
tag+month

bucket.

This is familiar: big
data is the top tag,
three documents.

Buckets for each month where big
data documents were created

One document
was created in

April 2010.

This document has fewer
than three members.

Next bucket of big data
groups was created in
August 2012

Analysis goes on, showing
all buckets for big data
and the rest of tags.
Licensed to Thomas Snead <n.ordickan@gmail.com>

208 CHAPTER 7 Exploring your data with aggregations
bucket of its parent aggregation. Next, we’ll look at how you’ll use the top_hits aggre-
gation to get result grouping.

7.4.2 Nesting aggregations to get result grouping

Result grouping is useful when you want to show the top results grouped by a certain
category. Like in Google, when you have many results from the same site, you some-
times see only the top three or so, and then it moves on to the next site. You can
always click the site’s name to get all the results from it that match your query.

 That’s what result grouping is for: it allows you to give the user a better idea of
what else is in there. Say you want to show the user the most recent events, and to
make results more diverse you’ll show the most recent event for the most frequent
attendees. You’ll do this in the next listing by running the terms aggregation on the
attendees field and nesting the top_hits aggregation under it.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "frequent_attendees": {
 "terms": {
 "field": "attendees",
 "size": 2
 },
 "aggregations": {
 "recent_events": {
 "top_hits": {
 "sort": {
 "date": "desc"
 },
 "_source": {
 "include": ["title"]
 },
 "size": 1
 }
 }
 }
 }
}}'
reply
 "aggregations" : {
 "frequent_attendees" : {
 "buckets" : [{
 "key" : "lee",
 "doc_count" : 5,
 "recent_events" : {
 "hits" : {
 "total" : 5,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "get-together",

Listing 7.16 Using the top hits aggregation to get result grouping

This terms aggregation
gives the two users
going to most events.

The top_hits aggregation
gives the actual events.

You get the most
recent first.

You can select the
fields to include.

Use size to select the
number of results
per bucket.

Lee is the most frequent,
with five events.

Results look exactly
like the ones you get
while querying.
Licensed to Thomas Snead <n.ordickan@gmail.com>

209Nesting aggregations
 "_type" : "event",
 "_id" : "100",
 "_score" : 1.0,
 "_source":{"title":"Liberator and Immutant"},
 "sort" : [1378404000000]
 }]
 }
 }
 }, {
 "key" : "shay",
 "doc_count" : 4,
 "recent_events" : {
 "hits" : {
[...]
 "_source":{"title":"Piggyback on Elasticsearch training in San

Francisco"},
[...]

At first, it may seem strange to use aggregations for getting results grouping. But now
that you’ve learned what aggregations are all about, you can see that these concepts of
buckets and nesting are powerful and enable you to do much more than gather some
statistics on query results. The top_hits aggregation is an example of a non-statistic
outcome of aggregations.

 You’re not limited to only query results when you run aggregations; this is the
default behavior, as you learned in section 7.1, but you can work around that if you
need to. For example, let’s say that you want to show the most popular blog post tags
on your blog somewhere on a sidebar. And you want to show that sidebar no matter
what the user is searching for. To achieve this, you’d need to run your terms aggrega-
tion on all blog posts, independent of your query. Here’s where the global aggregation
becomes useful: it produces a bucket with all the documents of your search context
(the indices and types you’re searching in), making all other aggregations nested
under it work with all these documents.

 The global aggregation is one of the single-bucket aggregations that you can use to
change the document set other aggregations run on, and that’s what we’ll explore next.

7.4.3 Using single-bucket aggregations

As you saw in section 7.1, Elasticsearch will run your aggregations on the query results
by default. If you want to change this default, you’ll have to use single-bucket aggrega-
tions. Here we’ll discuss three of them:

■ global creates a bucket with all the documents of the indices and types you’re
searching on. This is useful when you want to run aggregations on all docu-
ments, no matter the query.

■ filter and filters aggregations create buckets with all the documents match-
ing one or more filters. This is useful when you want to further restrict the doc-
ument set—for example, to run aggregations only on items that are in stock, or
separate aggregations for those in stock and those that are promoted.

Results look exactly
like the ones you get
while querying.
Licensed to Thomas Snead <n.ordickan@gmail.com>

210 CHAPTER 7 Exploring your data with aggregations
■ missing creates a bucket with documents that don’t have a specified field. It’s
useful when you have another aggregation running on a field, but you want to
do some computations on documents that aren’t covered by that aggregation
because the field is missing. For example, you want to show the average price of
items across multiple stores and also want to show the number of stores not list-
ing a price for those items.

GLOBAL

Using your get-together site from the code samples, assume you’re querying for events
about Elasticsearch, but you want to see the most frequent tags overall. For example, as we
described earlier, you want to show those top tags somewhere on a sidebar, independent
of what the user is searching for. To achieve this, you need to use the global aggregation,
which can alter the flow of data from query to aggregations, as shown in figure 7.12.

In the following listing you’ll nest the terms aggregation under the global aggrega-
tion to get the most frequent tags on all documents, even if the query looks for only
those with “elasticsearch” in the title.

URI=localhost:9200/get-together/group/_search
curl "$URI?pretty&search_type=count" -d '{
"query": {
 "match": {
 "name": "elasticsearch"
 }
},
"aggregations": {
 "all_documents": {
 "global": {},
 "aggregations": {

Listing 7.17 Global aggregation helps show top tags overall regardless of the query

Documents

Query Results

Aggregations

Global

Other aggregations

(nested under global)

Aggregation

results

Figure 7.12 Nesting aggregations under the global aggregation makes
them run on all documents.

The global aggregation
is the parent.
Licensed to Thomas Snead <n.ordickan@gmail.com>

211Nesting aggregations
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 }
 }
 }
 }
}}'
reply
[…]
 "hits" : {
 "total" : 2,
[…]
 "aggregations" : {
 "all_documents" : {
 "doc_count" : 5,
 "top_tags" : {
 "buckets" : [{
 "key" : "big data",
 "doc_count" : 3
[…]

When we say “all documents,” we mean all the documents from the search context
defined in the search URI. In this case you’re searching in the group type of the get-
together index, so all the groups will be taken into account. If you searched in the whole
get-together index, both groups and events would be included in the aggregation.

FILTER

Remember the post filter from section 7.1? It’s used when you define a filter directly
in the JSON request, instead of wrapping it in a filtered query; the post filter restricts
the results you get without affecting the aggregations.

 The filter aggregation does the opposite: it restricts the document set your
aggregations run on, without affecting the results. This is illustrated in figure 7.13.

The terms aggregation is nested
under it, to work on all data.

The query returns
two documents…

but aggregations
run on all five.

The terms aggregation results
are as if there was no query.

Aggregations

Filter

Documents

Query Results

Other aggregations

(getting only documents

matching the filter)

Aggregation

results

Figure 7.13 The filter aggregation restricts query results for aggregations
nested under it.
Licensed to Thomas Snead <n.ordickan@gmail.com>

212 CHAPTER 7 Exploring your data with aggregations
If you’re searching for events with “elasticsearch” in the title, you want to create a
word cloud from words within the description, but you want to only account for docu-
ments that are recent enough—let’s say after July 1, 2013.

 To do that, in the following listing you’d run a query as usual, but with aggrega-
tions. You’ll first have a filter aggregation restricting the document set to those after
July 1, and under it you’ll nest the terms aggregation that generates the word-cloud
information.

URI=localhost:9200/get-together/event/_search
curl "$URI?pretty&search_type=count" -d '{
"query": {
 "match": {
 "title": "elasticsearch"
 }
},
"aggregations": {
 "since_july": {
 "filter": {
 "range": {
 "date": {
 "gt": "2013-07-01T00:00"
 }
 }
 },
 "aggregations": {
 "description_cloud": {
 "terms": {
 "field": "description"
 }
 }
 }
 }
}}'
reply
[...]
 "hits" : {
 "total" : 7,
[...]
 "aggregations" : {
 "since_july" : {
 "doc_count" : 2,
 "description_cloud" : {
 "buckets" : [{
 "key" : "we",
 "doc_count" : 2
 }, {
 "key" : "with",
 "doc_count" : 2
[...]

Listing 7.18 filter aggregation restricts the document set coming from the query

Filter query defines
the bucket on which
its sub-aggregations
will run

The query returns
seven results.

The description_cloud
aggregation runs only on the
two results matching the filter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

213Summary
NOTE There’s also a filters (plural) aggregation, which allows you to
define multiple filters. It works similarly to the filter aggregation, except
that it generates multiple buckets, one for each filter—like the range aggrega-
tion generates multiple buckets, one for each range. For more information
about the filters aggregation, go to www.elastic.co/guide/en/elasticsearch/
reference/current/search-aggregations-bucket-filters-aggregation.html.

MISSING

Most of the aggregations we’ve looked at so far make buckets of documents and get
metrics from values of a field. If a document is missing that field, it won’t be part of
the bucket and it won’t contribute to any metrics.

 For example, you might have a date_histogram aggregation on event dates, but
some events have no date set yet. You can count them, too, through the missing
aggregation:

% curl "$URI?pretty&search_type=count" -d '{
"aggregations": {
 "event_dates": {
 "date_histogram": {
 "field": "date",
 "interval": "1M"
 }
 },
 "missing_date": {
 "missing": {
 "field": "date"
 }
 }
}}'

As with other single-bucket aggregations, the missing aggregation allows you to nest
other aggregations under it. For example, you can use the max aggregation to show
the maximum number of people who intend to participate in a single event that
doesn’t have a date set yet.

 There are other important single-bucket aggregations that we didn’t cover here,
like the nested and reverse_nested aggregations, which allow you to use all the
power of aggregations with nested documents.

 Using nested documents is one of the ways to work with relational data in Elastic-
search. The next chapter provides all you need to know about relations among docu-
ments, including nested documents and nested aggregations.

7.5 Summary
In this chapter, we covered the major aggregation types and how you can combine
them to get insights about documents matching a query:

■ Aggregations help you get an overall view of query results by counting terms
and computing statistics from resulting documents.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-filters-aggregation.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-filters-aggregation.html

214 CHAPTER 7 Exploring your data with aggregations
■ Aggregations are the new facets in Elasticsearch because there are more types of
aggregations, and you can also combine them to get deeper insights into the data.

■ There are two main types of aggregations: bucket and metrics.
■ Metrics aggregations calculate statistics over a set of documents, such as the

minimum, maximum, or average value of a numeric field.
■ Some metrics aggregations are calculated with approximation algorithms,

which allows them to scale a lot better than exact metrics. The percentiles
and cardinality aggregations work like this.

■ Bucket aggregations put documents into one or more buckets and return coun-
ters for those buckets—for example, the most frequent posters in a forum.
You can nest sub-aggregations under bucket aggregations, making these sub-
aggregations run one time for each bucket generated by the parent. You can
use this nesting, for example, to get the average number of comments for blog
posts matching each tag.

■ The top_hits aggregation can be used as a sub-aggregation to implement
result grouping.

■ The terms aggregation is typically used for top frequent users/locations/
items/... kinds of use cases. Other multi-bucket aggregations are variations of
the terms aggregation, such as the significant_terms aggregation, which
returns those words that appear more often in the query results than in the
overall index.

■ The range and date_range aggregations are useful for categorizing numeric
and date fields. The histogram and date_histogram aggregations are similar,
but they use fixed intervals instead of manually defined ranges.

■ Single-bucket aggregations, such as the global, filter, filters, and missing
aggregations, are used to change the document set on which other aggrega-
tions run, which defaults to the documents returned by the query.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Relations among
documents
Some data is inherently relational. For example, with the get-together site we’ve
used throughout the book, there are groups of people with the same interests and
events organized by those groups. How might you search for groups that host
events about a certain topic?

 If your data is flat structured, then you might as well skip this chapter and move
on to scaling out, which will be discussed in chapter 9. This is typically the case for
logs, where you have independent fields, such as timestamp, severity, and message.
If, on the other hand, you have related entities in your data, such as blog posts and
comments, users and products, and so on, then by now you may wonder how you
should best represent those relationships in your documents so you can run que-
ries and aggregations across those relationships.

This chapter covers
■ Objects and arrays of objects
■ Nested mapping, queries, and filters
■ Parent mapping, has_parent, and has_child

queries and filters
■ Denormalization techniques
215

Licensed to Thomas Snead <n.ordickan@gmail.com>

216 CHAPTER 8 Relations among documents
 With Elasticsearch you don’t have joins like in an SQL database. As we’ll discuss in
section 8.4 on denormalizing (duplicating data), that’s because having query-time
joins in a distributed system is typically slow, and Elasticsearch strives to be real time
and return query results in milliseconds. On the upside, there are multiple ways to
define relationships in Elasticsearch. You can, for example, search for events based on
their locations or search for groups based on properties of the events they host. We’ll
explore all the possibilities for defining relationships among documents in Elastic-
search—object types, nested documents, parent-child relationships, and denormaliz-
ing—and we’ll explore the advantages and disadvantages of each in this chapter.

8.1 Overview of options for defining relationships
among documents
First, let’s quickly define each of these approaches:

■ Object type—This allows you to have an object (with its own fields and values) as
the value of a field in your document. For example, your address field for an
event could be an object with its own fields: city, postal code, street name,
and so on. You could even have an array of addresses if the same event happens
in multiple cities.

■ Nested documents—The problem you may have with the object type is that all the
data is stored in the same document, so matches for a search can go across sub-
documents. For example, city=Paris AND street_name=Broadway could return
an event that’s hosted in New York and Paris at the same time, even though
there’s no Broadway street in Paris. Nested documents allow you to index the
same JSON document but will keep your addresses in separate Lucene docu-
ments, making only searches like city=New York AND street_name=Broadway
return the expected result.

■ Parent-child relationships between documents—This method allows you to use com-
pletely separate Elasticsearch documents for different types of data, like events
and groups, but still define a relationship between them. For example, you can
have groups as parents of events to indicate which event hosts which group.
This will allow you to search for events hosted by groups in your area or for
groups that host events about Elasticsearch.

■ Denormalizing—This is a general technique for duplicating data in order to rep-
resent relationships. In Elasticsearch, you’re likely to employ it to represent
many-to-many relationships because other options work only on one-to-many.
For example, all groups have members, and members could belong to multiple
groups. You can duplicate one side of the relationship by including all the
members of a group in that group’s document.

■ Application-side joins—This is another general technique where you deal with
relationships from your application. It works well when you have less data and
can afford to keep it normalized. For example, instead of duplicating members
for all groups they’re part of, you could store them separately and include only
Licensed to Thomas Snead <n.ordickan@gmail.com>

217Relations among documents
their IDs in the groups. Then you’d run two queries: first, on members to filter
those matching member criteria. Then you’d take their IDs and include them
in the search criteria for groups.

Before we dive into all the details of working with each possibility, we’ll provide an
overview of them and their typical use cases.

8.1.1 Object type

The easiest way to represent a common interest group and the corresponding events
is to use the object type. This allows you to put a JSON object or an array of JSON objects
as the value of your field, like the following example:

{
 "name": "Denver technology group",
 "events": [
 {
 "date": "2014-12-22",
 "title": "Introduction to Elasticsearch"
 },
 {
 "date": "2014-06-20",
 "title": "Introduction to Hadoop"
 }
]
}

If you want to search for a group with events that are about Elasticsearch, you can
search in the events.title field.

 Under the hood, Elasticsearch (or rather, Lucene) isn’t aware of the structure of
each object; it only knows about fields and values. The document ends up being
indexed as if it looked like this:

{
 "name": "Denver technology group",
 "events.date": ["2014-12-22", "2014-06-20"],
 "events.title": ["Introduction to Elasticsearch", "Introduction to Hadoop"]
}

Because of how they’re indexed, objects work brilliantly when you need to query only
one field of the object at a time (generally one-to-one relationships), but when query-
ing multiple fields (as is generally the case with one-to-many relationships), you might
get unexpected results. For example, let’s say you want to filter groups hosting
Hadoop meetings in December 2014. Your query can look like this:

"bool": {
 "must": [
 {
 "term": {
 "events.title": "hadoop"
 }
 },
Licensed to Thomas Snead <n.ordickan@gmail.com>

218 CHAPTER 8 Relations among documents
 {
 "range": {
 "events.date": {
 "from": "2014-12-01",
 "to": "2014-12-31"
 }
 }
 }
]
}

This will match the sample document because it has a title that matches hadoop and a
date that’s in the specified range. But this isn’t what you want: it’s the Elasticsearch
event that’s in December; the Hadoop event is in June. Sticking with the default
object type is the fastest and easiest approach to relations, but Elasticsearch is unaware
of the boundaries between documents, as illustrated in figure 8.1.

8.1.2 Nested type

If you need to make sure such cross-object matches don’t happen, you can use the
nested type, which will index your events in separate Lucene documents. In both cases,
the group’s JSON document will look exactly the same, and applications will index
each in the same way. The difference is in the mapping, which triggers Elasticsearch
to index nested inner objects in adjacent but separate Lucene documents, as illus-
trated in figure 8.2. When searching, you’ll need to use nested filters and queries,
which will be explored in section 8.2; those will search in all those Lucene documents.

 In some use cases, it’s not a good idea to mash all the data in the same document
as objects and nested types do. Take the case of groups and events: if a new event is
organized by a group and all of that group’s data is in the same document, you’ll

How you index the document How the document is stored How the query runs

The Elasticsearch event is

in December. The Hadoop

event is in June.

A search for Hadoop

events in December matches

the document.

name: Denver technology group

events:

date: 2014-12-22

title: Introduction to Elasticsearch

date: 2014-06-20

title: Introduction to Hadoop

date: 2014-12-01 TO 2014-12-31

title: hadoop

name: Denver technology group

events.date: [2014-12-22, 2014-06-20]

events.title: [Introduction to Hadoop,

Introduction to Elasticsearch]

Matches

Figure 8.1 Inner object boundaries aren’t accounted for when storing, leading to unexpected results.
Licensed to Thomas Snead <n.ordickan@gmail.com>

219Overview of options for defining relationships among documents
have to re-index the whole document for that event. This can hurt performance and
concurrency, depending on how big those documents get and how often those opera-
tions are done.

8.1.3 Parent-child relationships

With parent-child relationships, you can use completely different Elasticsearch docu-
ments by putting them in different types and defining their relationship in the mapping
of each type. For example, you can have events in one mapping type and groups in
another and you can specify in the mapping that groups are parents of events. Also, when
you index an event, you can point it to the group that it belongs to, as in figure 8.3. At

How you index the document Multiple documents are created.

Query looks at each

document from the block.

name: Denver technology group

events:

date: 2014-12-22

title: Introduction to Elasticsearch

date: 2014-06-20

title: Introduction to Hadoop

date: 2014-12-01 TO 2014-12-31

title: hadoop

name: Denver technology group

events.date: 2014-12-22

events.title: Introduction to Elasticsearch

events.date: 2014-06-20

events.title: Introduction to Hadoop

Doesn’t match

both criteria

Figure 8.2 The nested type makes Elasticsearch index objects as separate Lucene documents.

Multiple documents are indexed. Documents have parent−child relations.

Query looks at each

child. Returns a parent

if there’s a match.

name: Denver technology group

events:

date: 2014-12-22

title: Introduction to Elasticsearch

date: 2014-06-20

title: Introduction to Hadoop

name: Denver technology group

Parent Parent

Doesn’t match

both criteria

Doesn’t match

both criteria

date: 2014-06-20

title: Introduction to Hadoop

date: 2014-12-22

title: Introduction to Elasticsearch

date: 2014-12-01 TO 2014-12-30 AND title: Hadoop

Figure 8.3 Different types of Elasticsearch documents can have parent-child relationships.
Licensed to Thomas Snead <n.ordickan@gmail.com>

220 CHAPTER 8 Relations among documents
search time, you can use has_parent or has_child queries and filters to take the other
part of the relationship into account. We’ll discuss them later in this chapter as well.

8.1.4 Denormalizing

For any relational work, you have objects, nested documents, and parent-child rela-
tions. These work for one-to-one and one-to-many relationships—the kinds that have
one parent with one or more children. There are also techniques that are not specific
to Elasticsearch but are methods often employed by NoSQL data stores to overcome
the lack of joins: one is denormalizing, which means a document will include data that’s
related to it, even if the same data will have to be duplicated in another document.
Another is doing joins in your application.

 For example, let’s take groups and their members. A group can have more than
one member, and a user can be a member of more than one group. Both have their
own set of properties. To represent this relationship, you can have groups as parents
of the members. For users who are members of multiple groups, you can denormalize
their data: once for each group they belong to, like in figure 8.4.

 Alternatively, you can keep groups and members separated and include only mem-
ber IDs in group documents. You’d join groups and their members by using member
IDs in your application, which works well if you have a small number of member IDs to
query by, as shown in figure 8.5.

 In the rest of this chapter, we’ll take a deeper look at each of these techniques:
objects and arrays, and nested, parent-child, denormalizing, and application-side joins.
You’ll learn how they work internally, how to define them in the mapping, how to
index them, and how to search those documents.

name: Denver technology group

Lee Mike Susan

Group

documents

Member

documents

The document for Lee is stored twice:

once for each group he's a member of.

ParentParent Parent

name: Denver search and big data

Radu Lee

Parent Parent

Figure 8.4 Denormalizing is the technique of multiplying data to avoid costly relations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

221Having objects as field values
8.2 Having objects as field values
As you saw back in chapter 2, documents in Elasticsearch can be hierarchical. For
example, in the code samples, an event of the get-together site has its location as an
object with two fields—name and geolocation:

{
 "title": "Using Hadoop with Elasticsearch",
 "location": {
 "name": "SkillsMatter Exchange",
 "geolocation": "51.524806,-0.099095"
 }
}

If you’re familiar with Lucene, you may ask yourself, “How can Elasticsearch docu-
ments be hierarchical when Lucene supports only flat structures?” With objects, Elas-
ticsearch flattens hierarchies internally by putting each inner field with its full path as
a separate field in Lucene. You can see the process in figure 8.6.

 Typically, when you want to search in an event’s location name, you’ll refer to it as
location.name. We’ll look at that in section 8.2.2, but before we go into searching,
let’s define a mapping and see how to index some documents.

Application

id: 1

name: Lee

id: 2

name: Roy

name: Denver technology group

members: 1,2,3

name: Denver search and big data

members: 1,4

id: 3

name: Susan

id: 4

name: Radu

User query:

find Lee’s and Radu’s groups.

Member documents Group documents

Search for members

with name=Lee

or name=Radu

Response:

name=Denver technology group;

name=Denver search and big data

Response:

id=1; id=4

Search for groups with

members=1 or members=4

Figure 8.5 You can keep your data normalized and do the joins in your application.
Licensed to Thomas Snead <n.ordickan@gmail.com>

222 CHAPTER 8 Relations among documents
8.2.1 Mapping and indexing objects

By default, inner object mappings are automatically detected. In listing 8.1 you’ll
index a hierarchical document and see how the detected mapping looks. If those
events documents look familiar to you, it’s because the code samples store the loca-
tion of an event in an object, too. You can go to https://github.com/dakrone/elastic-
search-in-action to get the code samples now if you haven’t done so already.

curl -XPUT 'localhost:9200/get-together/event-object/1' -d '{
 "title": "Introduction to objects",
 "location": {
 "name": "Elasticsearch in Action book",
 "address": "chapter 8"
 }
}'
curl 'localhost:9200/get-together/_mapping/event-object?pretty'
expected reply:
{
 "get-together" : {
 "mappings": {
 "event-object" : {
 "properties" : {
 "location" : {
 "properties" : {
 "address" : {
 "type" : "string"
 },
 "name" : {
 "type" : "string"
 }
 }
 },
 "title" : {
 "type" : "string"
 }

Listing 8.1 Inner JSON objects mapped as the object type

Original document Document stored in Lucene

{

"title": "Using Hadoop with Elasticsearch",

"location": {

"name": "SkillsMatter Exchange",

"geolocation": "51.524806,−0.099095"

}

}

title: "Using Hadoop with Elasticsearch"

location.name: "SkillsMatter Exchange"

location.geolocation: "51.524806,−0.099095"

Figure 8.6 JSON hierarchical structure stored as a flat structure in Lucene

An object within the
JSON document

Object’s mapping
is automatically
detected with its
properties, like
the root object
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

223Having objects as field values
 }
 }
 }
 }
}

You can see that the inner object has a list of properties just like the root JSON object
has. You configure field types from inner objects in the same way you do for fields in
the root object. For example, you can upgrade location.address to have multiple
fields, as you saw in chapter 3. This will allow you to index the address in different
ways, such as having a not_analyzed version for exact matches in addition to the
default analyzed version.

TIP If you need to look at core types or how to use multi-fields, you can revisit
chapter 3. For more details on analysis, go back to chapter 5.

The mapping for a single inner object will also work if you have multiple such objects
in an array. For example, if you index the following document, the mapping from list-
ing 8.1 will stay the same:

{
 "title": "Introduction to objects",
 "location": [
 {
 "name": "Elasticsearch in Action book",
 "address": "chapter 8"
 },
 {
 "name": "Elasticsearch Guide",
 "address": "elasticsearch/reference/current/mapping-object-type.html"
 }
]
}'

To summarize, working with objects and arrays of objects in the mapping is very much
like working with the fields and arrays you saw in chapter 3. Next we’ll look at
searches, which also work like the ones you saw in chapters 4 and 6.

8.2.2 Searching in objects
By default, Elasticsearch will recognize and index hierarchical JSON documents with
inner objects without defining anything up front. As you can see in figure 8.7, the
same goes for searching. By default, you have to refer to inner objects by specifying
the path to the field you’re looking at, such as location.name.

name: Introduction to Elasticsearch

location:

name: Chicago

address: Philadelphia street

q=location.name:Chicago

Figure 8.7 You can search in an object’s field by specifying that field’s
full path.
Licensed to Thomas Snead <n.ordickan@gmail.com>

224 CHAPTER 8 Relations among documents

Two
ma

office
nam
with

lo
As you worked through chapters 2 and 4, you indexed documents from the code sam-
ples. You can now search through events happening in offices, as in listing 8.2, where
you’ll specify the full path of location.name as the field to search on.

TIP If you didn’t index the documents from the code samples yet, you can
do it now by cloning the repository at https://github.com/dakrone/elastic-
search-in-action and running the populate.sh script.

EVENT_PATH="localhost:9200/get-together/event"
curl "$EVENT_PATH/_search?q=location.name:office&pretty"
reply: [...] "title": "Hortonworks, the future of Hadoop and big data",
[...] "location": { "name": "SendGrid Denver office",
 "geolocation": "39.748477,-104.998852"[...]

 "title": "Big Data and the cloud at Microsoft",
[...] "location": { "name": "Bing Boulder office",
 "geolocation": "40.018528,-105.275806"[...]

AGGREGATIONS

While searching, treat object fields like location.name in the same way as any other
field. This also works with the aggregations that you saw in chapter 7. For example,
the following terms aggregation gets the most-used words in the location.name field
to help you build a word cloud:

% curl "localhost:9200/get-together/event/_search?pretty" -d '{
"aggregations" : {
 "location_cloud" : {
 "terms" : {
 "field" : "location.name"
 }
 }
}}'

OBJECTS WORK BEST FOR ONE-TO-ONE RELATIONSHIPS

One-to-one relationships are the perfect use case for objects: you can search in the
inner object’s fields as if they were fields in the root document. That’s because they
are! At the Lucene level, location.name is another field in the same flat structure.

 You can also have one-to-many relationships with objects by putting them in arrays.
For example, take a group with multiple members. If each member had its own
object, you’d represent them like this:

"members": [
 {
 "first_name": "Lee",
 "last_name": "Hinman"
 },
 {
 "first_name": "Radu",
 "last_name": "Gheorghe"
 }
]

Listing 8.2 Searching in location.name from events indexed by the code samples

events
tching
 in the
e field
in the
cation
object
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

225Nested type: connecting nested documents
You can still search for members.first_name:lee and it will match “Lee” as expected.
But you need to keep in mind that in Lucene the structure of the document looks
more like this:

"members.first_name": ["Lee", "Radu"],
"members.last_name": ["Hinman", "Gheorghe"]

It only works well if you search in one field, even if you have multiple criteria. If you
search for members.first_name:lee AND members.last_name:gheorghe, the docu-
ment will still match because it matches each of those two criteria. This happens even
though there’s no member named Lee Gheorghe because Elasticsearch throws every-
thing in the same document and it’s not aware of boundaries between objects. To
have Elasticsearch understand those boundaries, you can use the nested type, cov-
ered next.

8.3 Nested type: connecting nested documents
The nested type is defined in the mapping in much the same way as the object type,
which we’ve already discussed. Internally, nested documents are indexed as different
Lucene documents. To indicate that you want to use the nested type instead of the
object type, you have to set type to nested, as you’ll see in section 8.3.1.

 From an application’s perspective, indexing nested documents is the same as
indexing objects because the JSON document indexed as an Elasticsearch document
looks the same. For example:

{
 "name": "Elasticsearch News",
 "members": [

Using objects to define document relationships: pros and cons
Before moving on, here’s a quick recap of why you should (or shouldn’t) use objects.
The plus points:

■ They’re easy to use. Elasticsearch detects them by default; in most cases you
don’t have to define anything special up front to index objects.

■ You can run queries and aggregations on objects as you would do with flat doc-
uments. That’s because at the Lucene level they are flat documents.

■ No joins are involved. Because everything is in the same document, using
objects will give you the best performance of any of the options discussed in this
chapter.

The downsides:

■ There are no boundaries between objects. If you need such functionality, you
need to look at other options—nested, parent-child, and denormalizing—and
eventually combine them with objects if it suits your use case.

■ Updating a single object will re-index the whole document.
Licensed to Thomas Snead <n.ordickan@gmail.com>

226 CHAPTER 8 Relations among documents
 {
 "first_name": "Lee",
 "last_name": "Hinman"
 },
 {
 "first_name": "Radu",
 "last_name": "Gheorghe"
 }
]
}

At the Lucene level, Elasticsearch will index the root document and all the members
objects in separate documents. But it will put them in a single block, as shown in fig-
ure 8.8.

Documents of a block will always stay together, ensuring they get fetched and queried
with the minimum number of operations.

 Now that you know how nested documents work, let’s see how to make Elastic-
search use them. You have to specify that you want them nested at index time and at
search time:

■ Inner objects must have a nested mapping, to get them indexed as separate
documents in the same block.

■ Nested queries and filters must be used to make use of those blocks while
searching.

We’ll discuss how you can do each in the next two sections.

8.3.1 Mapping and indexing nested documents

The nested mapping looks similar to the object mapping, except instead of the type
being object, you have to make it nested. In the following listing you’ll define a
mapping with a nested type field and index a document that contains an array of
nested objects.

curl -XPUT localhost:9200/get-together/_mapping/group-nested -d '{
 "group-nested": {
 "properties": {
 "name": { "type": "string" },

Listing 8.3 Mapping and indexing nested documents

first_name: Lee

last_name: Hinman

first_name: Radu

last_name: Gheorghe

name: Elasticsearch news

Previous 2 documents are

members

Figure 8.8 A block of documents in Lucene storing the Elasticsearch document with
nested-type objects
Licensed to Thomas Snead <n.ordickan@gmail.com>

227Nested type: connecting nested documents
 "members": {
 "type": "nested",
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" }
 }
 }
 }
 }
}'
curl -XPUT localhost:9200/get-together/group-nested/1 -d '{
 "name": "Elasticsearch News",
 "members": [
 {
 "first_name": "Lee",
 "last_name": "Hinman"
 },
 {
 "first_name": "Radu",
 "last_name": "Gheorghe"
 }
]
}'

JSON objects with the nested mapping, like the ones you indexed in this listing, allow
you to search them with nested queries and filters. We’ll explore those searches in a
bit, but the thing to remember now is that nested queries and filters allow you to
search within the boundaries of such documents. For example, you’ll be able to search
for groups with members with the first name “Lee” and the last name “Hinman.”
Nested queries won’t do cross-object matches, thus avoiding unexpected matches
such as “Lee” with the last name “Gheorghe.”

ENABLING CROSS-OBJECT MATCHES

In some situations, you might need cross-object object matches as well. For example, if
you’re searching for a group that has both Lee and Radu, a query like this would work
for the regular JSON objects we discussed in the section on object type:

 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "members.first_name": "lee"
 }
 },
 {
 "term": {
 "members.first_name": "radu"
 }
 }
]
 }
 }

This signals Elasticsearch
to index members objects
in separate documents of
the same block.

This property goes in
the main document.

These objects go into
their own documents,
part of the same block as
the root document.
Licensed to Thomas Snead <n.ordickan@gmail.com>

228 CHAPTER 8 Relations among documents
This query would work because when you have everything in the same document,
both criteria will match.

 With nested documents, a query structured this way won’t work because members
objects would be stored in separate Lucene documents. And there’s no members
object that will match both criteria: there’s one for Lee and one for Radu, but there’s
no document containing both.

 In such situations, you might want to have both: objects for when you want cross-
object matches and nested documents for when you want to avoid them. Elastic-
search lets you do that through a couple of mapping options: include_in_root and
include_in_parent.

INCLUDE_IN_ROOT

Adding include_in_root to your nested mapping will index the inner members
objects twice: one time as a nested document and one time as an object within the
root document, as shown in figure 8.9.

The following mapping will let you use nested queries for the nested documents and
regular queries for when you need cross-object matches:

 "members": {
 "type": "nested",
 "include_in_root": true,
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" }
 }
 }

INCLUDE_IN_PARENT

Elasticsearch allows you to have multiple levels of nested documents. For example, if
your group can have members as its nested children, members can have children of
their own, such as the comments they posted on that group. Figure 8.10 illustrates
this hierarchy.

 With the include_in_root option you just saw, you can add the fields at any level
to the root document—in this case, the grandparent. There’s also an include_in
_parent option, which allows you to index the fields of one nested document into the

first_name: Lee

last_name: Hinman

first_name: Radu

last_name: Gheorghe

name: Elasticsearch news

members.first_name: [Lee, Radu]

members.last_name: [Hinman, Gheorghe]

Previous 2 documents are members

Figure 8.9 With include_in_root, fields of nested documents are indexed in the root
document, too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

229Nested type: connecting nested documents
immediate parent document. For example, the following listing will include the
comments in the members documents.

curl -XPUT localhost:9200/get-together/_mapping/group-multinested -d '{
 "group-multinested": {
 "properties": {
 "name": { "type": "string" },
 "members": {
 "type": "nested",
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" },
 "comments": {
 "type": "nested",
 "include_in_parent": true,
 "properties": {
 "date": {
 "type": "date",
 "format": "dateOptionalTime"
 },
 "comment": { "type": "string" }
 }
 }
 }
 }
 }
 }
}'

By now you’re probably wondering how you’d query these nested structures. This is
exactly what we’ll look at next.

8.3.2 Searches and aggregations on nested documents

As with mappings, when you run searches and aggregations on nested documents you’ll
need to specify that the objects you’re looking at are nested. There are nested queries,
filters, and aggregations that help you achieve this. Running these special queries and
aggregations will trigger Elasticsearch to join the different Lucene documents within
the same block and treat the resulting data as the same Elasticsearch document.

Listing 8.4 Using include_in_parent when there are multiple nested levels

date: 2014-10-18

comment: hello.world

include_in_parent

first_name: Radu

last_name: Gheorghe

name: Elasticsearch news

Previous 2 documents are

members

first_name: Lee

last_name: Hinman

comments.date: 2014-10-18

comments.comment: hello world

Previous doc is a comment

Figure 8.10 include_in_parent indexes a nested document’s field into the immediate parent, too.

members are nested documents
relative to the root group-multinested
document. No inclusion here.

comments are nested documents
of the members. Contents are
also indexed as objects for the
parent members documents.
Licensed to Thomas Snead <n.ordickan@gmail.com>

230 CHAPTER 8 Relations among documents
 The way to search within nested documents is to use the nested query or nested
filter. As you might expect after chapter 4, these are equivalent, with the traditional
differences between queries and filters:

■ Queries calculate score; thus they’re able to return results sorted by relevance.
■ Filters don’t calculate score, making them faster and easier to cache.

TIP In particular, the nested filter isn’t cached by default. You can change
this by setting _cache to true, as you can do in all filters.

If you want to run aggregations on nested fields—for example, to get the most fre-
quent group members—you’ll have to wrap them in a nested aggregation. If sub-
aggregations have to refer to the parent Lucene document—like showing top group
tags for each member—you can go up the hierarchy with the reverse_nested
aggregation.

NESTED QUERY AND FILTER

When you run a nested query or filter, you need to specify the path argument to tell
Elasticsearch where in the Lucene block those nested objects are located. In addition
to that, your nested query or filter will wrap a regular query or filter, respectively. In
the next listing, you’ll search for members with the first name “Lee” and the last
name “Gheorghe,” and you’ll see that the document indexed in listing 8.3 won’t
match because you have only Lee Hinman and Radu Gheorghe and no member
called Lee Gheorghe.

curl 'localhost:9200/get-together/group-nested/_search?pretty' -d '{
 "query": {
 "nested": {
 "path": "members",
 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "members.first_name": "lee"
 }
 },
 {
 "term": {
 "members.last_name": "gheorghe"
 }}]}}}}
}'

A nested filter would look exactly the same as the nested query you just saw. You’ll
have to replace the word query with filter.

Listing 8.5 Nested query example

Look for nested documents
under members.

The query would be the one that
you’d normally run on objects
within the same document.

There’s no member Lee
Gheorghe. Change this
to hinman and it will
match Lee Hinman.
Licensed to Thomas Snead <n.ordickan@gmail.com>

231Nested type: connecting nested documents
SEARCHING IN MULTIPLE LEVELS OF NESTING

Elasticsearch also allows you to have multiple levels of nesting. For example, back in
listing 8.4, you added a mapping that nests on two levels: members and their comments.
To search in the comments-nested documents, you’d have to specify members.comments
as the path, as shown in the following listing.

curl -XPUT localhost:9200/get-together/group-multinested/1 -d '{
 "name": "Elasticsearch News",
 "members": {
 "first_name": "Radu",
 "last_name": "Gheorghe",
 "comments": {
 "date": "2013-12-22",
 "comment": "hello world"
 }
 }
}'
curl 'localhost:9200/get-together/group-multinested/_search' -d '{
 "query": {
 "nested": {
 "path": "members.comments",
 "query": {
 "term": {
 "members.comments.comment": "hello"
 }
 }
 }
 }
} '

AGGREGATING SCORES OF NESTED OBJECTS

The nested query calculates the score, but we didn’t mention how. Let’s say you have
three members in a group: Lee Hinman, Radu Gheorghe, and another guy called Lee
Smith. If you have a nested query for “Lee,” it will match two members. Each inner
member document will get its own score, depending on how well it matches the crite-
ria. But the query coming from the application is for group documents, so Elastic-
search will need to give back a score for the whole group document. At this point,
there are four options, which can be specified with the score_mode option:

■ avg—This is the default option, which will take the scores of the matching
inner documents and return their average score.

■ total—This will sum up the matching inner documents’ scores and return it,
which is useful when the number of matches counts.

■ max—The maximum inner document score is returned.
■ none—No score is kept or counted toward the total document score.

Listing 8.6 Indexing and searching multiple levels of nested documents

comments object is nested under
the members object, also nested,
as configured in listing 8.4

Look in comments,
which is under
members.

The query still provides
the full path to the field
to look at.
Licensed to Thomas Snead <n.ordickan@gmail.com>

232 CHAPTER 8 Relations among documents
If you’re thinking that there are too many options for including the nested type in the
root or parent and the score options, see table 8.1 for a quick references on all those
options and when they’re useful.

GETTING WHICH INNER DOCUMENT MATCHED

When you index big documents with many nested subdocuments in them, you might
wonder which of the nested documents matched a specific nested query—in this case,
which of the group members matched a query looking for lee in first_name. Starting
with Elasticsearch 1.5, you can add an inner_hits object within your nested query or
filter to show the matching nested documents. Like your main search request, it sup-
ports options such as from and size:

 "query": {
 "nested": {
 "path": "members",
 "query": {
 "term": {
 "members.first_name": "lee"
 }
 },
 "inner_hits": {
 "from": 0,

Table 8.1 Nested type options

Option Description Example

include_in_parent:
true

Indexes the nested document in
the parent document,
too."first_name:Lee AND
last_name:Hinman", for which
you need the nested type, as well
as "first_name:Lee AND
first_name:Radu", for which
you need the object type.

include_in_root:
true

Indexes the nested document in
the root document.

Same scenario as previously, but you
have multiple layers; for example,
event>members>comments.

score_mode: avg Average score of matching nested
documents count.

Search for groups hosting events
about Elasticsearch.

score_mode: total Sums up nested document scores. Search for groups hosting most
events that have to do with Elastic-
search.

score_mode: max Maximum nested document score. Search for groups hosting top
events about Elasticsearch.

score_mode: none No score counts towards the total
score.

Filter groups hosting events about
Elasticsearch. Use the nested fil-
ter instead.
Licensed to Thomas Snead <n.ordickan@gmail.com>

233Nested type: connecting nested documents
 "size": 1
 }
 }
 }

The reply will contain an inner_hits object for each matching document, looking
much like a regular query reply, except that each document is a nested subdocument:

 "_source":{
 "name": "Elasticsearch News",
[...]
 "inner_hits" : {
 "members" : {
 "hits" : {
 "total" : 1,
 "max_score" : 1.4054651,
 "hits" : [{
 "_index" : "get-together",
 "_type" : "group-nested",
 "_id" : "1",
 "_nested" : {
 "field" : "members",
 "offset" : 0
 },
 "_score" : 1.4054651,
 "_source":{"first_name":"Lee","last_name":"Hinman"}
 }]
 }
 }

In order to identify the subdocument, you can look at the _nested object. field is the
path of the nested object, and offset shows the location of that nested document in
the array. In this case, Lee is the first member.

NESTED SORTING

In most use cases you’d sort root documents by score, but you can also sort them based
on numeric values of inner nested documents. This would be done in a similar way to
sorting on other fields, as you saw in chapter 6. For example, if you have a price aggrega-
tor site with products as root documents and offers from various shops as nested docu-
ments, you can sort on the minimum price of each offer. Similar to the score_mode
option you’ve seen before, you can specify a mode option and take the min, max, sum, or
avg value of nested documents as the sort value for the root document:

 "sort": [
 {
 "offers.price": {
 "mode": "min",
 "order": "asc"
 }
 }
]
Licensed to Thomas Snead <n.ordickan@gmail.com>

234 CHAPTER 8 Relations among documents
Elasticsearch will be smart about it and figure out that offers.price is located in the
offers object (if that’s what you defined in the mapping) and access the price field
under those nested documents for sorting.

NESTED AND REVERSE NESTED AGGREGATIONS

In order to do aggregations on nested type objects, you have to use the nested aggre-
gation. This is a single-bucket aggregation, where you indicate the path to the nested
object containing your field. As shown in figure 8.11, the nested aggregation triggers
Elasticsearch to do the necessary joins in order for other aggregations to work prop-
erly on the indicated path.

 For example, you’d normally run a terms aggregation on a member name field in
order to get the top users by the number of groups they’re part of. If that name field is
stored within the members nested type object, you’ll wrap that terms aggregation in a
nested aggregation that has the path set to members:

% curl "localhost:9200/get-together/group/_search?pretty" -d '{
 "aggregations" : {
 "members" : {
 "nested" : {
 "path" : "members"
 },

Group 1

(previous 2 are members)

Nested aggregation path: members

Aggregations

Other aggregations (working on members)

Radu Gheorghe Lee Hinman

Group 1: Radu Gheorghe

Aggregation results

Group 1: Lee Hinman

Figure 8.11 Nested aggregation doing necessary joins for other aggregations to
work on the indicated path
Licensed to Thomas Snead <n.ordickan@gmail.com>

235Nested type: connecting nested documents
 "aggregations" : {
 "frequent_members" : {
 "terms" : {
 "field" : "members.name"
 }
 }
 }
 }
 }
}'

You can put more aggregations under the members nested aggregation and Elastic-
search will know to look in the members type for all of them.

 There are use cases where you’d need to navigate back to the parent or root docu-
ment. For example, you want each of the obtained frequent members to show the top
group tags. To do that, you’ll use the reverse_nested aggregation, which will tell
Elasticsearch to go up the nested hierarchy:

 "frequent_members" : {
 "terms" : {
 "field" : "members.name"
 },
 "aggregations": {
 "back_to_group": {
 "reverse_nested": {},
 "aggregations": {
 "tags_per_member": {
 "terms": {
 "field": "tags"
 }
 }
 }
 }
 }
 }

The nested and reverse_nested aggregations can effectively be used to tell Elastic-
search in which Lucene document to look for the fields of the next aggregation. This
gives you the flexibility to use all the aggregation types you saw in chapter 7 for nested
documents, just as you could use them for objects. The only downside of this flexibility
is the performance ópenalty.

PERFORMANCE CONSIDERATIONS

We’ll cover performance in more detail in chapter 10, but in general you can expect
nested queries and aggregations to be slower than their object counterparts. That’s
because Elasticsearch needs to do some extra work to join multiple documents within
a block. But because of the underlying implementation using blocks, these queries
and aggregations are much faster than they would be if you had to join completely
separate Elasticsearch documents.
Licensed to Thomas Snead <n.ordickan@gmail.com>

236 CHAPTER 8 Relations among documents
 This block implementation also has its drawbacks. Because nested documents are
stuck together, updating or adding one inner document requires re-indexing the
whole ensemble. Applications also work with nested documents in a single JSON.

 If your nested documents become big, as they would in a get-together site if you
had one document per group and all its events nested, a better option might be to use
separate Elasticsearch documents and define parent-child relations between them.

8.4 Parent-child relationships: connecting separate
documents
Another option for defining relationships among data in Elasticsearch is to define a
type within an index as a child of another type of the same index. This is useful when
documents or relations need to be updated often. You’d define the relationship in the
mapping through the _parent field. For example, you can see in the mapping.json
file from the book’s code samples that events are children of groups, as illustrated in
figure 8.12.

Using nested type to define document relationships: pros and cons
Before moving on, here’s a quick recap of why you should (or shouldn’t) use nested
documents. The plus points:

■ Nested types are aware of object boundaries: no more matches for “Radu
Hinman”!

■ You can index the whole document at once, as you would with objects, after you
define your nested mapping.

■ Nested queries and aggregations join the parent and child parts, and you can
run any query across the union. No other option described in this chapter pro-
vides this feature.

■ Query-time joins are fast because all Lucene documents making the Elastic-
search document are together in the same block in the same segment.

■ You can include child documents in parents to get all the functionality from
objects if you need it. This functionality is transparent for your application.

The downsides:

■ Queries will be slower than their object equivalents. If objects provide you all the
needed functionality, they’re the better option because they’re faster.

■ Updating a child will re-index the whole document.

get−together

event

_parent: group

group
Figure 8.12 The relationship
between events and groups as
it’s defined in the mapping
Licensed to Thomas Snead <n.ordickan@gmail.com>

237Parent-child relationships: connecting separate documents
Once you have this relationship defined in the mapping, you can start indexing docu-
ments. The parents (group documents in this case) are indexed normally. For chil-
dren (events in this example) you need to specify the parent’s ID in the _parent field.
This will basically point the event to its group and allow you to search for groups that
include some event’s criteria or the other way around, like figure 8.13.

 Compared to the nested approach, searches are slower. With nested documents,
the fact that all inner objects are Lucene documents in the same block pays dividends
because they can be joined easily into the root document. Parent and child docu-
ments are completely different Elasticsearch documents, so they have to be searched
for separately.

 The parent-child approach shines when it comes to indexing, updating, and delet-
ing documents. Because parent and child documents are different Elasticsearch docu-
ments, they can be managed separately. For example, if a group has many events and
you need to add a new one, you add that new event document. Using the nested-type
approach, Elasticsearch will have to re-index the group documents with the new event
and all existing events, which is much slower.

 A parent document can already be indexed or not when you index its child. This is
useful when you have lots of new documents and you want to index them asynchro-
nously. For example, you can index events on your website generated by users and also
index the users. Events may come from your logging system, and users may be synchro-
nized from a database. You don’t need to worry about making sure a user exists before
you can index an event that will have that user as a parent. If the user doesn’t exist, the
event is indexed anyway.

 But how would you index parent and child documents in the first place? This is
what we’ll explore next.

get−together

Elasticsearch Denver

_id: 1

Introduction to ES

_parent: 1

Queries and Filters

_parent: 1

Denver Clojure

_id: 2

Liberator and Immutant

_parent: 2

group event

Figure 8.13 The _parent field of each child document is pointing to the _id field
of its parent.
Licensed to Thomas Snead <n.ordickan@gmail.com>

238 CHAPTER 8 Relations among documents
8.4.1 Indexing, updating, and deleting child documents

We’ll only worry about child documents here because parents are indexed like any
other document you’ve indexed so far. It’s the child documents that must point to
their parents via the _parent field.

NOTE Parents of a document type can be children of another type. You can
have multiple levels of such relationships, just as you can with nested type.
You can even combine them. For example, a group can have its members
stored as nested type and events separately stored as their children.

When it comes to child documents, you have to define the _parent field in the map-
ping, and when indexing, you must specify the parent’s ID in the _parent field. The
parent’s ID and type will also serve as the child’s routing value.

The common routing value makes all the children of the same parent land in the
same shard as the parent itself. When searching, all the correlations that Elasticsearch
has to do between a parent and its children happen on the same node. This is much
faster than broadcasting all the child documents over the network in search of a
parent. Another implication of routing is that when you update or delete a child doc-
ument, you need to specify the _parent field.

Routing and routing values
You may recall from chapter 2 how indexing operations get distributed to shards by
default: each document you index has an ID, and that ID gets hashed. At the same
time, each shard of the index has an equal slice of the total range of hashes. The doc-
ument you index goes to the shard that has that document’s hashed ID in its range.

The hashed ID is called the routing value, and the process of assigning a document
to a shard is called routing. Because each ID is different and you hash them all, the
default routing mechanism will evenly balance documents between shards.

You can also specify a custom routing value. We’ll go into the details of using custom
routing in chapter 9, but the basic idea is that Elasticsearch hashes that routing value
and not the document’s ID to determine the shard. You’d use custom routing when
you wanted to make sure multiple documents are in the same shard because hashing
the same routing value will always give you the same hash.

Custom routing becomes useful when you start searching because you can provide a
routing value to your query. When you do, Elasticsearch goes only to the shard that cor-
responds to that routing value, instead of querying all the shards. This reduces the load
in your cluster a lot and is typically used for keeping each user’s documents together.

The _parent field provides Elasticsearch with the ID and type of the parent docu-
ment, which lets it route the child documents to the same hash as the parent
document. _parent is essentially a routing value, and you benefit from it when
searching. Elasticsearch will automatically use this routing value to query only the
parent’s shard to get its children or the child’s shard to get its parent.
Licensed to Thomas Snead <n.ordickan@gmail.com>

239Parent-child relationships: connecting separate documents
 Next we’ll look at how you’d practically do all those things:

■ Define the _parent field in the mapping.
■ Index, update, and delete child documents by specifying the _parent field.

MAPPING

The next listing shows the relevant part of the events mapping from the code sam-
ples. The _parent field has to point to the parent type—in this case, group.

from mapping.json
 "event" : {
 "_source" : {
 "enabled" : true
 },
 "_all" : {
 "enabled" : false
 },
 "_parent" : {
 "type" : "group"
 },
 "properties" : {

INDEXING AND RETRIEVING

With the mapping in place, you can start indexing documents. Those documents have
to contain the parent value in the URI as a parameter. For your events, that value is
the document ID of the groups they belong to, such as where you have 2 for the Elas-
ticsearch Denver group:

% curl -XPOST 'localhost:9200/get-together/event/1103?parent=2' -d '{
 "host": "Radu,
 "title": "Yet another Elasticsearch intro in Denver"
}'

The _parent field is stored so you can retrieve it later, and it’s also indexed so you can
search on its value. If you look at the contents of _parent for a group, you’ll see the
type you defined in the mapping as well as the group ID you specified when indexing.

 To retrieve an event document, you run a normal index request, and you also have
to specify the _parent value:

% curl 'localhost:9200/get-together/event/1103?parent=2&pretty'
{
 "_index" : "get-together",
 "_type" : "event",
 "_id" : "1103",
 "_version" : 1,
 "found" : true, "_source" : {
 "host": "Radu",
 "title": "Yet another Elasticsearch intro in Denver"
 }
}

Listing 8.7 _parent mapping from the code samples

Mapping for the event
type starts here.

parent points to
the group type.

Properties (fields) of the
event type start here.
Licensed to Thomas Snead <n.ordickan@gmail.com>

240 CHAPTER 8 Relations among documents
The _parent value is required because you can have multiple events with the same ID
pointing to different groups. But the _parent and _id combination is unique. If you
try to get the child document without specifying its parent, you’ll get an error saying
that a routing value is required. The _parent value is that routing value Elasticsearch
is waiting for:

% curl 'localhost:9200/get-together/event/1103?pretty'
{
 "error" : "RoutingMissingException[routing is required for [get-together]/

[event]/[1103]]",
 "status" : 400
}

UPDATING

You’d update a child document through the update API, in a similar way to what you
did in chapter 3, section 3.5. The only difference here is that you have to provide the
parent again. As in the case of retrieving an event document, the parent is needed
to get the routing value of the event document you’re trying to change. Otherwise,
you’d get the same RoutingMissingException you had earlier when trying to retrieve
the document without specifying a parent.

 The following snippet adds a description to the document you just indexed:

curl -XPOST 'localhost:9200/get-together/event/1103/_update?parent=2' -d '{
 "doc": {
 "description": "Gives an overview of Elasticsearch"
 }
}'

DELETING

To delete a single event document, run a delete request like in chapter 3, section 3.6.1,
and add the parent parameter:

curl -XDELETE 'localhost:9200/get-together/event/1103?parent=2'

Deleting by query works as before: documents that match get deleted. This API
doesn’t need parent values and it doesn’t take them into account, either:

curl -XDELETE 'http://localhost:9200/get-together/event/_query?q=host:radu'

Speaking of queries, let’s look at how you can search across parent-child relations.

8.4.2 Searching in parent and child documents

With parent-child relations, like those you have with groups and their events, you can
search for groups and add event criteria or the other way around. Let’s see what the
actual queries and filters are that you’ll use:

■ has_child queries and filters are useful in searching for parents with criteria
from their children—for example, if you need groups hosting events about
Elasticsearch.
Licensed to Thomas Snead <n.ordickan@gmail.com>

241Parent-child relationships: connecting separate documents
■ has_parent queries and filters are useful when searching for children with cri-
teria from their parents—for example, events that happen in Denver because
location is a group property.

HAS_CHILD QUERY AND FILTER

If you want to search in groups hosting events about Elasticsearch, you can use
the has_child query or filter. The classic difference here is that filters don’t care
about scoring.

 A has_child filter can wrap another filter or a query. It runs that filter or query
against the specified child type and collects the matches. The matching children con-
tain the IDs of their parents in the _parent field. Elasticsearch collects those parent
IDs and removes the duplicates—because the same parent ID can appear multiple
times, once for each child—and returns the list of parent documents. The whole pro-
cess is illustrated in figure 8.14.

 In Phase 1 of the figure, the following actions take place:

■ The application runs a has_child filter, requesting group documents with chil-
dren of type event that have “Elasticsearch” in their title.

■ The filter runs on the event type for documents matching “Elasticsearch.”
■ The resulting event documents point to their respective parents. Multiple

events can point to the same group.

In Phase 2, Elasticsearch gathers all the unique group documents and returns them to
the application.

 The filter from figure 8.14 would look like this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "filtered": {
 "filter": {
 "has_child": {
 "type": "event",
 "filter": {
 "term": {
 "title": "elasticsearch"
 }
 }
 }
 }
 }
}}'

The has_child query runs in a similar way to the filter, except it can give a score to
each parent by aggregating child document scores. You’d do that by setting score_mode
to max, sum, avg, or none, as you can do with nested queries.

NOTE If the has_child filter can wrap a filter or a query, the has_child
query can only wrap another query.
Licensed to Thomas Snead <n.ordickan@gmail.com>

242 CHAPTER 8 Relations among documents
get−together

Phase 1: Query child documents

group

Denver Clojure

_id: 1

Denver Tech

_id: 2

San Francisco Tech

_id: 3

event

Logging and Elasticsearch

_parent: 3

Liberator and Immutant

_parent: 1

Search

application
Search for

groups that

host events

about

Elasticsearch

(group that

“has_child” of

type=event, where

title~=Elasticsearch)

Introduction to Solr

_parent: 2

Introduction to Elasticsearch

_parent: 2

Elasticsearch and Logstash

_parent: 2

Matches!

Matches!

Matches!

get−together

Phase 2: Aggregate matches into parent results

group

Denver Clojure

_id: 1

Denver Tech

_id: 2

San Francisco Tech

_id: 3

event

Logging and Elasticsearch

_parent: 3

Liberator and Immutant

_parent: 1

Search

application
Matching

groups:

Denver Tech,

San Francisco Tech

Introduction to Solr

_parent: 2

Introduction to Elasticsearch

_parent: 2

Elasticsearch and Logstash

_parent: 2

Result

Result

Figure 8.14 The has_child filter first runs on children and then aggregates the results into parents, which
are returned.
Licensed to Thomas Snead <n.ordickan@gmail.com>

243Parent-child relationships: connecting separate documents
For example, you can set score_mode to max and get the following query to return
groups ordered by which one hosts the most relevant event about Elasticsearch:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "has_child": {
 "type": "event",
 "score_mode": "max",
 "query": {
 "term": {
 "title": "elasticsearch"
 }
 }
 }
}}'

WARNING In order for has_child queries and filters to remove parent dupli-
cates quickly, it caches their IDs in the field cache we introduced in chapter 6.
This may take a lot of JVM heap if you have lots of parent matches for your
queries. This will be less of a problem once you can have doc values for the
_parent field, as described for this issue: https://github.com/elastic/elastic-
search/issues/6107.

GETTING THE CHILD DOCUMENTS IN THE RESULTS

By default, only the parent documents are returned by the has_child query, not the
children that match. You can get the children as well by adding the inner_hits
option you saw earlier for nested documents:

"query": {
 "has_child": {
 "type": "event",
 "query": {
 "term": {
 "title": "elasticsearch"
 }
 },
 "inner_hits": {}
 }
}

As with nested documents, the reply for each matching group will also contain match-
ing events, except that now events are separate documents and have their own ID
instead of an offset:

 "name": "Elasticsearch Denver",
[...]
 "inner_hits" : {
 "event" : {
 "hits" : {
 "total" : 2,
 "max_score" : 0.9581454,
 "hits" : [{
 "_index" : "get-together",
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/6107
https://github.com/elastic/elasticsearch/issues/6107

244 CHAPTER 8 Relations among documents
 "_type" : "event",
 "_id" : "103",
 "_score" : 0.9581454,
 "_source":{
 "host": "Lee",
 "title": "Introduction to Elasticsearch",

HAS_PARENT QUERY AND FILTER

has_parent is, as you might expect, the opposite of has_child. You use it when you
want to search for events but include criteria from the groups they belong to.

 The has_parent filter can wrap a query or a filter. It runs on the "type" that you
provide, takes the parent results, and returns the children, pointing to their IDs from
their _parent field.

 The following listing shows how to search for events about Elasticsearch, but only if
they happen in Denver.

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
"query": {
 "bool": {
 "must": [
 {
 "term": {
 "title": "elasticsearch"
 }
 },
 {
 "has_parent": {
 "type": "group",
 "query": {
 "term": {
 "location": "denver"
 }
 }
 }
 }
]
 }
}}'

Because a child only has a parent, there are no scores to aggregate, as would be the
case with has_child. By default, has_parent has no influence on the child’s score
("score_mode": "none"). You can change "score_mode" to "score" to make events
inherit the score of their parent groups.

 Like the has_child queries and filters, has_parent queries and filters have to load
parent IDs in field data to support fast lookups. That being said, you can expect all
those parent/child queries to be slower than the equivalent nested queries. It’s the
price you pay for being able to index and search all the documents independently.

 Another similarity with has_child queries and filters is the fact that has_parent
returns, by default, only one side of the relationship—in this case, the child documents.

Listing 8.8 has_parent query to find Elasticsearch events in Denver

The main query contains
two must-have queries.

This runs on the events
to make sure they have
“elasticsearch” in their title.

This runs on each event’s
group to make sure events
happen in Denver.
Licensed to Thomas Snead <n.ordickan@gmail.com>

245Parent-child relationships: connecting separate documents
From Elasticsearch 1.5, you can fetch the parents as well by adding the inner_hits
object to the query.

CHILDREN AGGREGATION

With version 1.4, a children aggregation was introduced, which allows you to nest
aggregations on child documents under those you make on parent documents. Let’s
say that you already get the most popular tags for your get-together groups through
the terms aggregation. For each of those tags, you also need the most frequent attend-
ees to events belonging to each tag’s groups. In other words, you want to see the peo-
ple with strong preferences toward specific categories of events.

 You’ll get these people in the following listing by nesting a children aggregation
under your top-tags terms aggregation. Under the children aggregation, you’ll nest
another terms aggregation that will count the number of attendees for each tag.

curl "localhost:9200/get-together/_search?pretty" -d '{

 "aggs": {

 "top-tags": {

 "terms": {

 "field": "tags.verbatim"

 },

 "aggs": {

 "to-events": {

 "children": {

 "type" : "event"

 },

 "aggs": {

 "frequent-attendees": {

 "terms": {

 "field": "attendees"

 }

 }

 }

 }

 }

 }

 }

}'

Listing 8.9 Combining parent and child aggregations

top-tags aggregation
creates one bucket of
groups for each tag.

to-events creates one
bucket of events for
the groups in each tag.

frequent-attendees counts
attendees within each of
the event buckets.
Licensed to Thomas Snead <n.ordickan@gmail.com>

246 CHAPTER 8 Relations among documents
reply

 "aggregations" : {

 "top-tags" : {

 "buckets" : [{

 "key" : "big data",

 "doc_count" : 3,

 "to-events" : {

 "doc_count" : 9,

 "frequent-attendees" : {

 "buckets" : [{

 "key" : "andy",

 "doc_count" : 3

 }, {

 "key" : "greg",

 "doc_count" : 3

[...]

 "key" : "open source",

 "doc_count" : 3,

 "to-events" : {

 "doc_count" : 9,

 "frequent-attendees" : {

 "buckets" : [{

 "key" : "shay",

 "doc_count" : 4

 }, {

 "key" : "andy",

 "doc_count" : 3

[...]

NOTE You may have noticed that the children aggregation is similar to the
nested aggregation—it passes child documents to the aggregations within it.
Unfortunately, at least up to version 1.4, Elasticsearch doesn’t provide a par-
ent-child equivalent of the reverse nested aggregation to allow you to do the
opposite: pass parent documents to the aggregations within it.

You can think of nested documents as index-time joins and parent-child relations as
query-time joins. With nested, a parent and all its children are joined in a single Lucene

There are three groups
with the big data tag.

The three groups have a
total of nine event child
documents.

Andy and Greg go
to three big data
events each.

Shay goes to four
open-source events.
Licensed to Thomas Snead <n.ordickan@gmail.com>

247Denormalizing: using redundant data connections
block when indexing. By contrast, the _parent field allows different types of docu-
ments to be correlated at query time.

 Nested and parent-child structures are good for one-to-many relationships. For
many-to-many relationships, you’ll have to employ a technique common in the NoSQL
space: denormalizing.

8.5 Denormalizing: using redundant data connections
Denormalizing is about multiplying data in order to avoid expensive joins. Let’s take
an example we’ve already discussed: groups and events. It’s a one-to-many relation-
ship because an event can be hosted by only one group, and one group can host
many events.

 With parent-child or nested structures, groups and events are stored in different
Lucene documents, as shown in figure 8.15.

Using parent-child designation to define document relationships:
pros and cons
Before moving on, here’s a quick recap of why you should or shouldn’t use parent-
child relationships. The plus points:

■ Children and parents can be updated separately.
■ Query-time join performance is better than if you did joins in your application

because all related documents are routed to the same shard and joins are done
at the shard level without adding network hops.

The downsides:

■ Queries are more expensive than the nested equivalent and need more memory
than field data.

■ Aggregations can only join child documents to their parents and not the other
way around, at least up to version 1.4.

group: Denver technology event: Introduction to Hadoop

event: Logging and Elasticsearch

event: Introduction to Elasticsearch

Figure 8.15 Hierarchical relationship (nested or parent-child) between different
Lucene documents
Licensed to Thomas Snead <n.ordickan@gmail.com>

248 CHAPTER 8 Relations among documents
This relationship can be denormalized by adding the group info to all the events, as
shown in figure 8.16.

 Next we’ll look at how and when denormalizing helps and how you’d concretely
index and query denormalized data.

8.5.1 Use cases for denormalizing

Let’s start with the disadvantages: denormalized data takes more space and is more
difficult to manage than normalized data. In the example from figure 8.16, if you
change the group’s details, you have to update three documents because those details
appear three times.

 On the positive side, you don’t have to join different documents when you query.
This is particularly important in distributed systems because having to join documents
across the network introduces big latencies, as you can see in figure 8.17.

group: Denver technology

event: Introduction to Hadoop

group: Denver technology

event: Logging and Elasticsearch

group: Denver technology

event: Introduction to Elasticsearch

Figure 8.16 Hierarchical relationship
denormalized by copying group
information to each event

Node 2

event:

Introduction to Hadoop

group:

Denver technology

Node 3

event:

Introduction to

Elasticsearch

Node 1

event:

Logging and

Elasticsearch

Figure 8.17 Joining documents across nodes is difficult because of network latency.
Licensed to Thomas Snead <n.ordickan@gmail.com>

249Denormalizing: using redundant data connections
Nested and parent-child documents get around this by making sure a parent and all
its children are stored in the same node, as shown in figure 8.18:

■ Nested documents are indexed in Lucene blocks, which are always together in
the same segment of the same shard.

■ Child documents are indexed with the same routing value as their parents,
making them belong to the same shard.

DENORMALIZING ONE-TO-MANY RELATIONS

Local joins done with nested and parent-child structures are much, much faster than
remote joins could be. Still, they’re more expensive than having no joins at all. This is
where denormalizing can help, but it implies that there’s more data. Your indexing
operations will cause more load because you’ll index more data and queries will run
on larger indices, making them slower.

 You can see that there’s a tradeoff when it comes to choosing among nested, parent-
child, and denormalizing. Typically, you’ll denormalize for one-to-many relations if
your data is fairly small and static and you have lots of queries. This way, disadvantages
hurt less—index size is acceptable and there aren’t too many indexing operations—
and avoiding joins should make queries faster.

TIP If performance is important to you, take a look at chapter 10, which is all
about indexing and searching fast.

Node 1

event:

Document Relations

in Elasticsearch

event:

Queries and Filters

Node 2

event:

Logging and

Elasticsearch

event:

Introduction to

Elasticsearch

event:

Elasticsearch

and Logstash

group:

San Francisco

technology

event:

Introduction

to Hadoop

group:

Denver

technology

Figure 8.18 Nested/parent-child relations make sure all joins are local.
Licensed to Thomas Snead <n.ordickan@gmail.com>

250 CHAPTER 8 Relations among documents
DENORMALIZING MANY-TO-MANY RELATIONSHIPS

Many-to-many relationships are dealt with differently than one-to-many relationships
in Elasticsearch. For example, a group can contain multiple members, and a person
could be a member of multiple groups.

 Here denormalizing is a much better proposition because unlike one-to-many
implementations of nested and parent-child, Elasticsearch can’t promise to contain
many-to-many relationships in a single node. As shown in figure 8.19, a single relation-
ship may expand to your whole dataset. This would make expensive, cross-network
joins inevitable.

 Because of how slow cross-network joins would be, as of version 1.5, denormalizing
is the only way to represent many-to-many relationships in Elasticsearch. Figure 8.20
shows how the structure of figure 8.19 looks when members are denormalized as chil-
dren of each group they belong to. We denormalize one side of the many-to-many
relationship into more one-to-many relationships.

 Next we’ll look at how you can index, update, and query a structure like the one in
figure 8.20.

8.5.2 Indexing, updating, and deleting denormalized data

Before you start indexing, you have to decide how you want to denormalize your
many-to-many into one-to-many, and there are two big decision points: which side of
the relationship you should denormalize and how you want to represent the resulting
one-to-many relationship.

Node 1

member:

Radu

member:

Igor

group:

Bucharest

Elasticsearch

group:

San Francisco

technology

Node 2

member:

Lee

member:

Joe

group:

Denver

Clojure

group:

Denver

Elasticsearch

Figure 8.19 Many-to-many relationships can contain a huge amount of data, making local joins impossible.
Licensed to Thomas Snead <n.ordickan@gmail.com>

251Denormalizing: using redundant data connections
WHICH SIDE WILL BE DENORMALIZED?
Will members be multiplied as children of groups or the other way around? To pick
one you have to understand how data is indexed, updated, deleted, and queried. The
part that’s denormalized—the child—will be more difficult to manage in all aspects:

■ You index those documents multiple times, once for each of its parents.
■ When you update, you have to update all instances of that document.
■ When you delete, you have to delete all instances.
■ When you query for children separately, you’ll get more hits with the same con-

tent, so you have to remove duplicates on the application side.

Based on these assumptions, it looks like it makes more sense to make members chil-
dren of groups. Member documents are smaller in size, change less often, and are
queried less often than groups are with their events. As a result, managing cloned
member documents should be easier.

HOW DO YOU WANT TO REPRESENT THE ONE-TO-MANY RELATIONSHIP?
Will you have parent-child or nested documents? You’d choose here based on how
often groups and members are searched and retrieved together. Nested queries per-
form better than has_parent or has_child queries.

 Another important aspect is how often membership changes. Parent-child struc-
tures perform better here because they can be updated separately.

 For this example, let’s assume that searching and retrieving groups and mem-
bers together is rare and that members often join and leave groups, so we’ll go with
parent-child.

Node 1

member:

Joe

member:

Igor

member:

Radu

group:

Bucharest

Elasticsearch

group:

San Francisco

technology

Node 2

group:

Denver

Clojure

group:

Denver

Elasticsearch

member:

Lee

member:

Joe

member:

Radu

member:

Igor

Figure 8.20 Many-to-many relation denormalized into multiple one-to-many relations, allowing local joins
Licensed to Thomas Snead <n.ordickan@gmail.com>

252 CHAPTER 8 Relations among documents
INDEXING

Groups and their events would be indexed as before, but members have to be indexed
once for every group they belong to. The following listing will first define a mapping
for the new member type and then index Mr. Hinman as a member of both the Denver
Clojure and the Denver Elasticsearch groups from the code samples.

curl -XPUT 'localhost:9200/get-together/_mapping/member' -d '{
"member": {
 "_parent": { "type": "group"},
 "properties": {
 "first_name": { "type": "string"},
 "last_name": { "type": "string"}
 }
}}'
curl -XPUT 'localhost:9200/get-together/member/10001?parent=1' -d '{
 "first_name": "Matthew",
 "last_name": "Hinman"
}'
curl -XPUT 'localhost:9200/get-together/member/10001?parent=2' -d '{
 "first_name": "Matthew",
 "last_name": "Hinman"
}'

NOTE Multiple indexing operations can be done in a single HTTP request by
using the bulk API. We’ll discuss the bulk API in chapter 10, which is all about
performance.

UPDATING

Once again, groups get lucky and you update them just as you saw in chapter 3, sec-
tion 3.5. But if a member changes its details because it’s denormalized, you’ll first
have to search for all its duplicates and then update each one. In listing 8.11, you’ll
search for all the documents that have an _id of “10001” and update his first name to
Lee because that’s what he likes to be called.

 You’re searching for IDs instead of names because IDs tend to be more reliable
than other fields, such as names. You may recall from the parent-child section that
when you’re using the _parent field, multiple documents within the same type within
the same index can have the same _id value. Only the _id and _parent combination
is guaranteed to be unique. When denormalizing, you can use this feature and inten-
tionally use the same _id for the same person, once for each group they belong to.
This allows you to quickly and reliably retrieve all the instances of the same person by
searching for their ID.

Listing 8.10 Indexing denormalized members

First define the mapping,
specifying that the parent
type for members is group.

parent=1 points to the
Denver Clojure group.

parent=2 points to the
Denver Elasticsearch group.
Licensed to Thomas Snead <n.ordickan@gmail.com>

253Denormalizing: using redundant data connections

For e
the re
docu
upda

n

curl 'localhost:9200/get-together/member/_search?pretty' -d '{
"query": {
 "filtered": {
 "filter": {
 "term": {
 "_id": "10001"
 }
 }
 }
},
"fields": ["_parent"]
}'
curl -XPOST 'localhost:9200/get-together/member/10001/_update?parent=1' -d '{
"doc": {
 "first_name": "Lee"
}
}'
curl -XPOST 'localhost:9200/get-together/member/10001/_update?parent=2' -d '{
"doc": {
 "first_name": "Lee"
}
}'

NOTE Multiple updates can also be done in a single HTTP request over the
bulk API. As with bulk indexing, we’ll discuss bulk updates in chapter 10.

DELETING

Deleting a denormalized member requires you to identify all the copies again. Recall
from the parent-child section that in order to delete a specific document, you have to
specify both the _id and the _parent; that’s because the combination of the two is
unique in the same index and type. You’d have to identify members first through a
term filter like the one in listing 8.11. Then you’d delete each member instance:

% curl -XDELETE 'localhost:9200/get-together/member/10001?parent=1'
% curl -XDELETE 'localhost:9200/get-together/member/10001?parent=2'

Now that you know how to index, update, and delete in denormalized members, let’s
look at how you can run queries on them.

8.5.3 Querying denormalized data

If you need to query groups, there’s nothing denormalizing-specific because groups
aren’t denormalized. If you need search criteria from their members, use the has_child
query as you did in section 8.4.2.

 Members got the shortest straw with queries, too, because they’re denormalized.
You can search for them, even including criteria from the groups they belong to, with
the has_parent query. But there’s a problem: you’ll get back identical members. In

Listing 8.11 Updating denormalized members

Searching for all the members with
the same ID, which will return all
the duplicates of this person

You need only the _parent field from each
document, so you know how to update.

ach of
turned
ments,
te the

ame to
“Lee.”
Licensed to Thomas Snead <n.ordickan@gmail.com>

254 CHAPTER 8 Relations among documents

Ind
a p

twice
fo

The
pers
retu

twice,
for

g

the following listing, you’ll index another two members, and when you search, you’ll
get them both back.

curl -XPUT 'localhost:9200/get-together/member/10002?parent=1' -d '{
 "first_name": "Radu",
 "last_name": "Gheorghe"
}'
curl -XPUT 'localhost:9200/get-together/member/10002?parent=2' -d '{
 "first_name": "Radu",
 "last_name": "Gheorghe"
}'
curl -XPOST 'localhost:9200/get-together/_refresh'
curl 'localhost:9200/get-together/member/_search?pretty' -d '{
"query": {
 "term": {
 "first_name": "radu"
 }
}}'
reply "hits" : [{ "_index" : "get-together", "_type" :
"member", "_id" : "10002", "_score" : 2.871802, "_source" : {
"first_name": "Radu","last_name": "Gheorghe"} }, { "_index" :
"get-together", "_type" : "member", "_id" : "10002",
"_score" : 2.5040774, "_source" : {
"first_name": "Radu","last_name": "Gheorghe"} }]

As of version 1.5, you can only remove those duplicate members from your applica-
tion. Once again, if the same person always has the same ID, you can use that ID to
make this task easier: two results with the same ID are identical.

 The same problem occurs with aggregations: if you want to count some properties
of the members, those counts will be inaccurate because the same member appears in
multiple places.

 The workaround for most searches and aggregations is to maintain a copy of all
members in a separate index. Let’s call it “members.” Querying that index will return
just that one copy of each member. The problem with this workaround is that it only
helps when you query members alone, unless you’re doing application-side joins, which
we’ll discuss next.

Listing 8.12 Querying for denormalized data returns duplicate results

Using denormalization to define relationships: pros and cons
As we did with the other methods, we provide a quick overview of the strengths and
weaknesses of denormalizing. The plus points:

■ It allows you to work with many-to-many relationships.
■ No joins are involved, making querying faster if your cluster can handle the extra

data caused by duplication.

exing
erson
, once
r each
group

Searching for the
person by name

same
on is
rned

 once
 each
roup.
Licensed to Thomas Snead <n.ordickan@gmail.com>

255Application-side joins
8.6 Application-side joins
Instead of denormalizing, another option for the groups and members relationship is
to keep them in separate indices and do the joins from your application. Much like
Elasticsearch does with parent-child, it requires you to store IDs to indicate which
member belongs to which group, and you have to query both.

 For example, if you have a query for groups with “Denver” in the name, where
“Lee” or “Radu” is a member, you can run a bool query on members first to find out
which ones are Lee and Radu. Once you get the IDs, you can run a second query on
groups, where you add the member IDs in a terms filter next to the Denver query. The
whole process is illustrated in figure 8.21.

The downsides:

■ Your application has to take care of duplicates when indexing, updating, and
deleting.

■ Some searches and aggregations won’t work as expected because data is
duplicated.

Application

id: 1

name: Lee

id: 2

name: Roy

name: Denver technology group

members: 1,2,3

name: Denver search and big data

members: 1,4

id: 3

name: Susan

id: 4

name: Radu

User query:

find groups with “Denver” in the name

where Lee or Radu are members

query:

bool:

should

name:lee

name:radu

Response:

name=Denver technology group;

name=Denver search and big data

Response:

id=1; id=4

query:

bool:

must:

name:denver

members:1,4

Members index Group index

Figure 8.21 Application-side joins require you to run two queries.
Licensed to Thomas Snead <n.ordickan@gmail.com>

256 CHAPTER 8 Relations among documents
This works well when there aren’t many matching members. But if you want to include
all members from a city, for example, the second query will have to run a terms filter
with possibly thousands of members, making it expensive. Still, there are some things
you can do:

■ When you run the first query, if you need only member IDs, you can disable
retrieving the _source field to reduce traffic:

"query": {
 "filtered": {
[...]
 }
},
"_source": false

■ In the second query, if you have lots of IDs, it might be faster to execute the
terms filter on field data:

"query": {
 "filtered": {
 "filter": {
 "terms": {
 "members": [1, 4],
 "execution": "fielddata"
 }
 }
 }
}

We’ll cover more about performance in chapter 10, but when you model document
relations, it ultimately comes down to picking your battles.

8.7 Summary
Lots of use cases have to deal with relational data, and in this chapter you saw how you
can deal with these:

■ Object mapping, mostly useful for one-to-one relationships
■ Nested documents and parent-child structures, which deal with one-to-many

relationships
■ Denormalizing and application-side joins, which are mostly helpful with many-

to-many relationships

Joining hurts performance, even when it’s local, so it’s typically a good idea to put as
many properties as you can in a single document. Object mapping helps with this
because it allows hierarchies in your documents. Searches and aggregations work here
as they do with a flat-structured document; you have to refer to fields using their full
path, like location.name.
Licensed to Thomas Snead <n.ordickan@gmail.com>

257Summary
 When you need to avoid cross-object matches, nested and parent/child documents
are available to help:

■ Nested documents are basically index-time joins, putting multiple Lucene doc-
uments in a single block. To the application, the block looks like a single Elas-
ticsearch document.

■ The _parent field allows you to point a document to another document of
another type in the same index to be its parent. Elasticsearch will use routing to
make sure a parent and all its children land in the same shard so that it can per-
form a local join at query time.

You can search nested and parent-child documents with the following queries and filters:

■ nested query and filter
■ has_child query and filter
■ has_parent query and filter

Aggregations work across the relationship only with nested documents through the
nested and reverse_nested aggregation types.

 Objects, nested and parent-child documents, and the generic technique of denor-
malizing can be combined in any way so you can get a good mix of performance and
functionality.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 2

In this part, we’ll shift the focus from development to production. There are
three chapters that focus on scaling Elasticsearch, tuning it for better perfor-
mance, and maintaining it. You’ll also get a deeper understanding of the func-
tionality we covered in part 1 as we explore how various features perform. This
information is valuable for both development and operations, as they typically
have to work together to set up Elasticsearch in a way that can scale out to the
production requirements and be easy to maintain.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Scaling out
Now that you have a good understanding of what Elasticsearch is capable of, you’re
ready to hear about Elasticsearch’s next killer feature: the ability to scale—that is,
to be able to handle more indexing and searching or to handle indexing and
searching faster. These days, scaling is an important factor when dealing with mil-
lions or billions of documents. You won’t always be able to support the amount of
traffic you’d like to on a single running instance of Elasticsearch, or node, without
scaling in some form. Fortunately, Elasticsearch is easy to scale. In this chapter we’ll
take a look at the scaling capabilities that Elasticsearch has at its disposal and how
you can use those features to give Elasticsearch more performance and, at the same
time, more reliability.

This chapter covers
■ Adding nodes to your Elasticsearch cluster
■ Master election in your Elasticsearch cluster
■ Removing and decommissioning nodes
■ Using the _cat API to understand your cluster
■ Planning and scaling strategies
■ Aliases and custom routing
261

Licensed to Thomas Snead <n.ordickan@gmail.com>

262 CHAPTER 9 Scaling out
 Having already seen how Elasticsearch handles the get-together data we intro-
duced in chapters 2 and 3, we’re now ready to talk about how to scale your search sys-
tem to handle all the traffic you can throw at it. Imagine you’re sitting in your office,
and in comes your boss to announce that your site has been featured in Wired maga-
zine as the hot new site everyone should use for booking social get-togethers. Your job:
make sure Elasticsearch can handle the influx of new groups and events, as well as all
the new searches expected to hit the site once that Wired article gets published! You
have 24 hours. How are you going to scale up your Elasticsearch server to handle this
traffic in this time frame? Thankfully, Elasticsearch makes scaling a breeze by adding
nodes to your existing Elasticsearch cluster.

9.1 Adding nodes to your Elasticsearch cluster
Even if you don’t end up in a situation at work like the one just described, during the
course of your experimentation with Elasticsearch you’ll eventually come to the point
where you need to add more processing power to your Elasticsearch cluster.

 You need to be able to search and index data in your indices faster, with more par-
allelization; you’ve run out of disk space on your machine, or perhaps your Elastic-
search node is now running out of memory when performing queries against your
data. In these cases, the easiest way to add performance to your Elasticsearch node is
usually to turn it into an Elasticsearch cluster by adding more nodes, which you first
learned about in chapter 2. Elasticsearch makes it easy to scale horizontally by adding
nodes to your cluster so they can share the indexing and searching workload. By add-
ing nodes to your Elasticsearch cluster, you’ll soon be able to handle indexing and
searching the millions of groups and events headed your way.

9.1.1 Adding nodes to your cluster

The first step in creating an Elasticsearch cluster is to add another node (or nodes) to
the single node to make it a cluster of nodes. Adding a node to your local develop-
ment environment is as simple as extracting the Elasticsearch distribution to a sepa-
rate directory, entering the directory, and running the bin/elasticsearch command,
as the following code snippet shows. Elasticsearch will automatically pick the next port
available to bind to—in this case, 9201—and automatically join the existing node like
magic! If you want to go one step further, there’s no need to even extract the Elastic-
search distribution again; multiple instances of Elasticsearch can run from the same
directory without interfering with one another:

% bin/elasticsearch

[in another terminal window or tab]
% mkdir elasticsearch2
% cd elasticsearch2
% tar zxf elasticsearch-1.5.0.tar.gz
% cd elasticsearch-1.5.0
% bin/elasticsearch

The originally running
Elasticsearch node
from chapter 2

The newly started
Elasticsearch node
Licensed to Thomas Snead <n.ordickan@gmail.com>

263Scaling out
Now that you have a second Elasticsearch node added to the cluster, you can run the
health command from before and see how the status of the cluster has changed, as
shown in the following listing.

% curl -XGET 'http://localhost:9200/_cluster/health?pretty'
{
 "cluster_name" : "elasticsearch",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 5,
 "active_shards" : 10,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0
}

There are now no unassigned shards in this cluster, as you can see from the
unassigned_shards count, which is zero. How exactly did the shards end up on the
other node? Take a look at figure 9.1 and see what happens to the test index before
and after adding a node to the cluster. On the left side, the primary shards for the test
index have all been assigned to Node1, whereas the replica shards are unassigned. In

Listing 9.1 Getting cluster health for a two-node cluster

The cluster is now green
instead of yellow.

Two nodes that can handle
data are now in the cluster.

All 10 shards
are now active.

There are no longer any
unassigned shards.

These replica shards

are unassigned

because they cannot

be on the same node

as the primary

shard.

Node 2

test0

test1

test2

test3

test4

Node 1

A node

is added.

test0

test1

test2

test3

test4

test0

test1

test2

test3

test4

Node 1

test0

test1

test2

test3

test4

test0

test1

test2

test3

test4

Figure 9.1 Shard allocation for the test index for one node transitioning to two nodes
Licensed to Thomas Snead <n.ordickan@gmail.com>

264 CHAPTER 9 Scaling out
this state, the cluster is yellow because all primary shards have a home, but the replica
shards don’t. Once a second node is added, the unassigned replica shards are assigned
to the new Node2, which causes the cluster to move to the green state.

 When another node is added, Elasticsearch will automatically try to balance out
the shards among all nodes. Figure 9.2 shows how the same shards are distributed
across three Elasticsearch nodes in the same cluster. Notice that there’s no ban on
having primary and replica shards on the same node as long as the primary and rep-
lica shards for the same shard number aren’t on the same node.

 If even more nodes are added to this cluster, Elasticsearch will try to balance the
number of shards evenly across all nodes because each node added in this way shares
the burden by taking a portion of the data (in the form of shards). Congratulations,
you just horizontally scaled your Elasticsearch cluster!

 Adding nodes to your Elasticsearch cluster comes with substantial benefits, the pri-
mary being high availability and increased performance. When replicas are enabled
(which they are by default), Elasticsearch will automatically promote a replica shard to
a primary in the event the primary shard can’t be located, so even if you lose the node
where the primary shards for your index are, you’ll still be able to access the data in
your indices. This distribution of data among nodes also increases performance
because search and get requests can be handled by both primary and replica shards,
as you’ll recall from figure 2.9. Scaling this way also adds more memory to the cluster
as a whole, so if memory-intensive searches and aggregations are taking too long or
causing your cluster to run out of memory, adding more nodes is almost always an easy
way to handle more numerous and complex operations.

 Now that you’ve turned your Elasticsearch node into a true cluster by adding a
node, you may be wondering how each node was able to discover and communicate

Node 3

test1

test2

test4

Node 1

test0

test1

test3

Node 2

Elasticsearch has rebalanced the shards across all three nodes.

test0

test2

test3

test4

Figure 9.2 Shard allocation for the test index with three Elasticsearch nodes
Licensed to Thomas Snead <n.ordickan@gmail.com>

265Discovering other Elasticsearch nodes
with the other node or nodes. In the next section, we’ll talk about Elasticsearch’s node
discovery methods.

9.2 Discovering other Elasticsearch nodes
You might be wondering exactly how the second node you added to your cluster dis-
covered the first node and automatically joined the cluster. Out of the box, Elastic-
search nodes can use two different ways to discover one another: multicast or unicast.
Elasticsearch can use both at once but by default is configured to use only multicast
because unicast requires a list of known nodes to connect to.

9.2.1 Multicast discovery
When Elasticsearch starts up, it sends a multicast ping to the address 224.2.2.4 on port
54328, which in turn is responded to by other Elasticsearch nodes with the same clus-
ter name, so if you notice a coworker’s local copy of Elasticsearch running and joining
your cluster, make sure to change the cluster.name setting inside your elastic-
search.yml configuration file from the default elasticsearch to a more specific
name. Multicast discovery has a few options that you can change or disable entirely by
setting the following options in elasticsearch.yml, shown with their default values:

discovery.zen.ping.multicast:
 group: 224.2.2.4
 port: 54328
 ttl: 3
 address: null
 enabled: true

Generally, multicast discovery is a decent option when dealing with very flexible clus-
ters on the same network, where the IP address of nodes being added changes fre-
quently. Think of multicast discovery as shouting “Hey, are there any other nodes out
there running an Elasticsearch cluster named ‘xyz’?” and then waiting for a response.
Figure 9.3 shows what multicast discovery looks like graphically.

An address of null
means to bind to all
network interfaces.

Multicast sent to the entire network:

Are there any other Elasticsearch

nodes out there?

Response—joining

the cluster

New

node 1

Node

Node

Node

Figure 9.3 Elasticsearch
using multicast discovery
to discover other nodes in
the cluster
Licensed to Thomas Snead <n.ordickan@gmail.com>

266 CHAPTER 9 Scaling out
Although multicast discovery is great for local development and a quick proof-of-
concept test, when developing a production cluster, a more stable way of having Elas-
ticsearch discover other nodes is to use some or all of the nodes as “gossip routers” to
discover more information about the cluster. This can prevent the situation where
nodes accidentally connect to a cluster they shouldn’t have when someone connects a
laptop to the same network. Unicast helps combat this by not sending a message to
everyone on a network but connecting to a specific list of nodes.

9.2.2 Unicast discovery

Unicast discovery uses a list of hosts for Elasticsearch to connect to and attempt to find
more information about the cluster. This is ideal for cases where the IP address of
the node won’t change frequently or for production Elasticsearch systems where
only certain nodes should be communicated with instead of the entire network. Uni-
cast is used by telling Elasticsearch the IP address and, optionally, the port or range
of ports for other nodes in the cluster. An example of a unicast configuration would
be setting discovery.zen.ping.unicast.hosts: ["10.0.0.3", "10.0.0.4:9300",
"10.0.0.5[9300-9400]"] inside elasticsearch.yml for the Elasticsearch nodes on your
network. Not all of the Elasticsearch nodes in the cluster need to be present in the
unicast list to discover all the nodes, but enough addresses must be configured for
each node to know about a gossip node that’s available. For example, if the first node
in the unicast list knows about three out of seven nodes in a cluster, and the second
node in the unicast list knows about the other four out of the seven nodes, the node
performing the discovery will still be able to find all seven nodes in the cluster. Fig-
ure 9.4 shows a graphical representation of unicast discovery.

 There’s no need to disable unicast discovery. If you’d like to use only multicast dis-
covery to find other Elasticsearch nodes, leave the list unset (or empty) in the configu-
ration file. After discovering other nodes that are part of the cluster, the Elasticsearch
nodes will hold a master election.

“What nodes do

you know about?”

“These are the

nodes I know about.”

“These are the

nodes I know about.”

“What nodes do

you know about?”

New

node

Node

Node

Figure 9.4 Elasticsearch using
unicast discovery to discover
other nodes in the cluster
Licensed to Thomas Snead <n.ordickan@gmail.com>

267Discovering other Elasticsearch nodes
9.2.3 Electing a master node and detecting faults

Once the nodes in your cluster have discovered each other, they’ll negotiate who
becomes the master. The master node is in charge of managing the state of the clus-
ter—that is, the current settings and state of the shards, indices, and nodes in the
cluster. After the master node has been elected, it sets up a system of internal pings
to make sure each node stays alive and healthy while in the cluster; this is called fault
detection, which we’ll talk more about at the end of this section. Elasticsearch consid-
ers all nodes eligible to become the master node unless the node.master setting is
set to false. We’ll talk more in this chapter about why you may want to set the
node.master setting, and the different types of Elasticsearch nodes, when we talk
about how to search faster. In the event that your cluster has only a single node, that
node will elect itself as the master after a timeout period if it doesn’t detect any
other nodes in the cluster.

 For production clusters with more than a couple of nodes, it’s a good idea to set
the minimum number of master nodes. Although this setting may make it seem like
Elasticsearch can have multiple master nodes, it actually tells Elasticsearch how many
nodes in a cluster must be eligible to become a master before the cluster is in a healthy
state. Setting the minimum number of eligible master nodes can be helpful in making
sure your cluster doesn’t try to perform potentially dangerous operations without first
having a complete view of the state of your cluster. You can either set the minimum
number to the total number of nodes in your cluster if the number of nodes doesn’t
change over time or set it according to a common rule, which is the number of
nodes in your cluster divided by 2, plus 1. Setting the minimum_master_nodes setting
to a number higher than 1 can help prevent what’s called a split brain in the cluster.
Following the common rule for a three-node cluster, you’d set minimum_master_nodes
to 2, or for a 14-node cluster, you’d set the value to 8. To change this setting, change
discovery.zen.minimum_master_nodes in elasticsearch.yml to the number that fits
your cluster.

What’s a split brain?
The term split brain describes a scenario where (usually under heavy load or network
issues) one or more of the nodes in your Elasticsearch cluster loses communication
to the master node, elects a new master, and continues to process requests. At this
point, you may have two different Elasticsearch clusters running independently of
each other—hence the term split brain, because a single cluster has split into two
distinct parts, similar to the hemispheres in a brain. To prevent this from happening,
you should set discovery.zen.minimum_master_nodes depending on the number
of nodes in your cluster. If the number of nodes won’t change, set it to the total num-
ber of nodes in the cluster; otherwise the number of nodes divided by 2 plus 1 is a
good setting, because that means that if one or two nodes lose communication to
the other nodes, they won’t be able to elect a new master and form a new cluster
because they don’t meet the required number of master-eligible nodes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

268 CHAPTER 9 Scaling out
Once your nodes are up and have discovered each other, you can see what node your
cluster has elected as master by using the curl command shown in the following listing.

% curl 'http://localhost:9200/_cluster/state/master_node,nodes?pretty'
{
 "cluster_name" : "elasticsearch",
 "master_node" : "5jDQs-LwRrqyrLm4DS_7wQ",
 "nodes" : {
 "5jDQs-LwRrqyrLm4DS_7wQ" : {
 "name" : "Kosmos",
 "transport_address" : "inet[/192.168.0.20:9300]",
 "attributes" : { }
 },
 "Rylg633AQmSnqbsPZwKqRQ" : {
 "name" : "Bolo",
 "transport_address" : "inet[/192.168.0.20:9301]",
 "attributes" : { }
 }
 }
}

9.2.4 Fault detection

Now that your cluster has two nodes in it, as well as an elected master node, it needs to
communicate with all nodes in the cluster to make sure everything is okay within the
cluster; this is called the fault detection process. The master node pings all other nodes
in the cluster and each node pings the master to make sure an election doesn’t need
to be held, as shown in figure 9.5.

 As the figure shows, each node sends a ping every discovery.zen.fd.ping_interval
(defaulting to 1s), waits for discovery.zen.fd.ping_timeout (defaulting to 30s), and

Listing 9.2 Getting information about nodes in the cluster with curl

The ID of the node
currently elected as master

First node in
the cluster

Second node in
the cluster

“Are you

alive?”

“Yep, I’m alive.”

“Are you alive?”

Master

node

Node 3

No response, so the node

will be declared disconnected

Node 2

Figure 9.5 Cluster fault
detection by the master node
Licensed to Thomas Snead <n.ordickan@gmail.com>

269Removing nodes from a cluster
tries a maximum number of discovery.zen.fd.ping_retries times (defaulting to 3)
before declaring a node disconnected and routing shards or holding a master election
as necessary. Be sure to change these values if your environment has higher latency—say,
when running on ec2 nodes that may not be in the same Amazon AWS zone.

 Inevitably, one of the nodes in your cluster will go down, so in the next section,
we’ll talk about what happens when nodes are removed from the cluster and how to
remove nodes without causing data loss in a distributed system.

9.3 Removing nodes from a cluster
Adding nodes is a great way to scale, but what happens when a node drops out of the
Elasticsearch cluster or you stop the node? Use the three-node example cluster you
created in figure 9.2, containing the test index with five primary shards and one rep-
lica spread across the three nodes.

 Let’s say Joe, the sys admin, accidentally trips over the power cord for Node1; what
happens to the three shards currently on Node1? The first thing that Elasticsearch
does is automatically turn the test0 and test3 replica shards that are on Node2 into
primary shards, as shown in figure 9.6. This is because indexing first goes to the pri-
mary shards, so Elasticsearch tries hard to make sure there are always primaries
assigned for an index.

NOTE Elasticsearch can choose any of the replicas to turn into a primary
shard. It just so happens in this example that there’s only one replica for each
primary shard to choose from: the replicas on Node2.

After Elasticsearch turns the replicas for the missing primary shards into primaries,
the cluster looks like figure 9.6.

 After turning the replica shards into primaries, the cluster is now in a yellow state,
meaning that some replica shards aren’t allocated to a node. Elasticsearch next needs

Node 3

test1

test2

test4

Node 1

test0

test1

test3

Node 2

The test0 and test3 replicas

get turned into primaries.

test0

test2

test3

test4

Figure 9.6 Turning replica shards into primaries after node loss
Licensed to Thomas Snead <n.ordickan@gmail.com>

270 CHAPTER 9 Scaling out
to create more replica shards to maintain the high-availability setup for the test index.
Because all the primaries are available, the data from the test0 and test3 primary
shards on Node2 will be replicated into replicas on Node3, and the data from the test1
primary shard on Node3 will be replicated onto Node2, as shown in figure 9.7.

 Once the replica shards have been re-created to account for the node loss, the
cluster will be back in the green state with all primary and replica shards assigned to a
node. Keep in mind that during this time the entire cluster will be available for search-
ing and indexing because no data was actually lost. If more than a single node is lost
or a shard with no replicas is lost, the cluster will be in a red state, meaning that some
amount of data has been lost permanently, and you’ll need to either reconnect the
node that has the data to the cluster or re-index the data that’s missing.

 It’s important to understand how much risk you’re willing to take with regard to
the number of replica shards. Having a single replica means that one node can disap-
pear from the cluster without data loss; if you use two replicas, two nodes can be lost
without data loss, and so on, so make sure you choose the appropriate number of rep-
licas for your usage. It’s also always a good idea to back up your indices, which is a sub-
ject we’ll cover in chapter 11 when we talk about administering your cluster.

 You’ve seen what adding and removing a node looks like, but what about shutting
down a node without having the cluster go into a yellow state? In the next section we’ll
talk about decommissioning nodes so that they can be removed from the cluster with
no interruption to the cluster users.

9.3.1 Decommissioning nodes

Having Elasticsearch automatically create new replicas when a node goes down is
great, but when maintaining a cluster, you’re eventually going to want to shut down a
node that has data on it without the cluster going into a yellow state. Perhaps the hard-
ware is degraded or you aren’t receiving the same number of requests you previously
were and don’t need to keep the node around. You could always stop the node by kill-
ing the Java process, and Elasticsearch would recover the data to the other nodes, but

Node 3

test1

test2

test4

test0

test3

Node 2

test0

test2

test3

test1

test4

Figure 9.7 Re-creating replica
shards after losing a node
Licensed to Thomas Snead <n.ordickan@gmail.com>

271Removing nodes from a cluster
what about when you have zero replicas for an index? That means you could lose data
if you were to shut down a node without moving the data off first!

 Thankfully, Elasticsearch has a way to decommission a node by telling the cluster
not to allocate any shards to a node or set of nodes. In our three-node example, let’s
assume that Node1, Node2, and Node3 have the IP addresses of 192.168.1.10,
192.168.1.11, and 192.168.1.12, respectively. If you wanted to shut down Node1 while
keeping the cluster in a green state, you could decommission the node first, which
would move all shards on the node to other nodes in the cluster. You decommission
a node by making a temporary change to the cluster settings, as shown in the follow-
ing listing.

curl -XPUT localhost:9200/_cluster/settings -d '{
 "transient" : {
 "cluster.routing.allocation.exclude._ip" : "192.168.1.10"
 }
}'

Once you run this command, Elasticsearch will start moving all the shards from the
decommissioned node to other nodes in the cluster. You can check where shards are
located in the cluster by first determining the ID of the nodes in the cluster with the
_nodes endpoint and then looking at the cluster state to see where each shard in the clus-
ter is currently allocated. See the next listing for example output of these commands.

% curl -s 'localhost:9200/_nodes?pretty'
{
 "cluster_name" : "elasticsearch",
 "nodes" : {
 "lFd3ANXiQlug-0eJztvaeA" : {
 "name" : "Hayden, Alex",
 "transport_address" : "inet[/192.168.0.10:9300]",
 "ip": "192.168.0.10",
 "host" : "Perth",
 "version" : "1.5.0",
 "http_address" : "inet[/192.168.0.10:9200]"
 },
 "JGG7qQmBTB-LNfoz7VS97Q" : {
 "name" : "Magma",
 "transport_address" : "inet[/192.168.0.11:9300]",
 "ip": "192.168.0.10",
 "host" : "Xanadu",
 "version" : "1.5.0",
 "http_address" : "inet[/192.168.0.11:9200]"
 },

Listing 9.3 Decommissioning a node in the cluster

Listing 9.4 Determining shard location from the cluster state

This setting is transient,
meaning it won’t persist
through a cluster restart.

192.168.1.10 is the IP
address of Node1.

First retrieve the list of
nodes in the cluster.

The unique ID
of the node

IP address of the
node that was
decommissioned
Licensed to Thomas Snead <n.ordickan@gmail.com>

272 CHAPTER 9 Scaling out
 "McUL2T6vTSOGEAjSEuI-Zw" : {
 "name" : "Toad-In-Waiting",
 "transport_address" : "inet[/192.168.0.12:9300]",
 "ip": "192.168.0.10",
 "host" : "Corinth",
 "version" : "1.5.0",
 "http_address" : "inet[/192.168.0.12:9200]"
 }
 }
}

% curl 'localhost:9200/_cluster/state/routing_table,routing_nodes?pretty'
{
 "cluster_name" : "elasticsearch",
 "routing_table" : {
 "indices" : {
 "test" : {
 "shards" : {
 ...
 }
 }
 }
 },
 "routing_nodes" : {
 "unassigned" : [],
 "nodes" : {
 "JGG7qQmBTB-LNfoz7VS97Q" : [{
 "state" : "STARTED",
 "primary" : true,
 "node" : "JGG7qQmBTB-LNfoz7VS97Q",
 "relocating_node" : null,
 "shard" : 0,
 "index" : "test"
 }, {
 "state" : "STARTED",
 "primary" : true,
 "node" : "JGG7qQmBTB-LNfoz7VS97Q",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "test"
 }, {
 "state" : "STARTED",
 "primary" : true,
 "node" : "JGG7qQmBTB-LNfoz7VS97Q",
 "relocating_node" : null,
 "shard" : 2,
 "index" : "test"
 }, ...],
 "McUL2T6vTSOGEAjSEuI-Zw" : [{
 "state" : "STARTED",
 "primary" : false,
 "node" : "McUL2T6vTSOGEAjSEuI-Zw",
 "relocating_node" : null,
 "shard" : 0,
 "index" : "test"

Retrieving a filtered
cluster state

Shortened to fit
on this page

This key lists each node
with the shards currently
assigned to it.
Licensed to Thomas Snead <n.ordickan@gmail.com>

273Removing nodes from a cluster
 }, {
 "state" : "STARTED",
 "primary" : false,
 "node" : "McUL2T6vTSOGEAjSEuI-Zw",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "test"
 }, {
 "state" : "STARTED",
 "primary" : false,
 "node" : "McUL2T6vTSOGEAjSEuI-Zw",
 "relocating_node" : null,
 "shard" : 2,
 "index" : "test"
 }, ...]
 }
 },
 "allocations" : []
}.

This is a long and ugly listing! Don’t worry, though; later on this chapter we’ll talk
about a more human-readable version of this API called the _cat API.

 Here you can see that there are no shards on the lFd3ANXiQlug-0eJztvaeA
node, which is the 192.168.1.10 node that was decommissioned, so it’s now safe to
stop ES on that node without causing the cluster to leave a green state. This process
can be repeated one node at a time to decommission each node you want to stop, or
you can use a list of comma-separated IP addresses instead of 192.168.1.10 to decom-
mission multiple nodes at once. Keep in mind, however, that the other nodes in the
cluster must be able to handle allocating the shard in terms of disk and memory use,
so plan accordingly to make sure you have enough headroom before decommission-
ing nodes!

Now that you’ve seen how nodes are added and removed from the cluster, let’s talk
about how to upgrade Elasticsearch nodes.

How much data can an Elasticsearch index handle?
Good question! Unfortunately, the limitations of a single index depend on the type of
machine used to store the index, what you’re planning to do with the data, and how
many shards the index is backed by. Generally, a Lucene index (also known as an
Elasticsearch shard) can’t have more than 2.1 billion documents or more than 274
billion distinct terms (see https://lucene.apache.org/core/4_9_0/core/org/apache/
lucene/codecs/lucene49/package-summary.html#Limitations), but you may be lim-
ited in disk space before this point. The best way to tell whether you’ll be able to store
your data in a single index is to try it out in a nonproduction system, adjusting settings
as needed to get the performance characteristics desired. You can’t change the num-
ber of primary shards once an index has been created; you can only change the number
of replica shards, so plan accordingly!
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/codecs/lucene49/package-summary.html#Limitations
https://lucene.apache.org/core/4_9_0/core/org/apache/lucene/codecs/lucene49/package-summary.html#Limitations

274 CHAPTER 9 Scaling out
9.4 Upgrading Elasticsearch nodes
There comes a point with every installation of Elasticsearch when it’s time to upgrade
to the latest version. We recommend that you always run the latest version of Elastic-
search because there are always new features being added, as well as bugs being fixed.
That said, depending on the constraints of your environment, upgrading may be
more or less complex.

The simplest way to upgrade an Elasticsearch cluster is to shut down all nodes and
then upgrade each Elasticsearch installation with whatever method you originally
used—for example, extracting the distribution if you used the .tar.gz distribution or
installing the .deb package using dpkg if you’re using a Debian-based system. Once
each node has been upgraded, you can restart the entire cluster and wait for Elastic-
search to reach the green state. Voila, upgrade done!

 This may not always be the case, though; in many situations downtime can’t be tol-
erated, even during off-peak hours. Thankfully, you can perform a rolling restart to
upgrade your Elasticsearch cluster while still serving indexing and searching requests.

9.4.1 Performing a rolling restart

A rolling restart is another way of restarting your cluster in order to upgrade a node or
make a nondynamic configuration change without sacrificing the availability of your
data. This can be particularly good for production deployments of Elasticsearch.
Instead of shutting down the whole cluster at once, you shut nodes down one at a
time. This process is slightly more involved than a full restart because of the multiple
steps required.

 The first step in performing a rolling restart is to decide if you want Elasticsearch
to automatically rebalance shards while each individual node is not running. The
majority of people don’t want Elasticsearch to start its automatic recovery in the event
a node leaves the cluster for an upgrade because it means that they’ll be rebalancing

Upgrade caveats
Before we get to upgrading instructions, it’s important to understand that there are
some limitations when upgrading Elasticsearch instances. Once you’ve upgraded an
Elasticsearch server, the server can’t be downgraded if any new documents have
been written. When you perform upgrades to a production instance, you should
always back up your data before performing an upgrade. We’ll talk more about back-
ing up your data in chapter 11.

Another important thing to consider is that although Elasticsearch can handle a
mixed-version environment easily, there have been cases where different JVM ver-
sions serialize information differently, so we recommend that you not mix different
JVM versions within the same Elasticsearch cluster.
Licensed to Thomas Snead <n.ordickan@gmail.com>

275Upgrading Elasticsearch nodes
every single node. In reality the data is still there; the node just needs to be restarted
and to rejoin the cluster in order for it to be available.

 For most people, it makes sense not to shift data around the cluster while perform-
ing the upgrade. You can accomplish this by setting the cluster.routing.alloca-
tion.enable setting to none while performing the upgrade. To clarify, the entire
process looks like this:

1 Disable allocation for the cluster.
2 Shut down the node that will be upgraded.
3 Upgrade the node.
4 Start the upgraded node.
5 Wait until the upgraded node has joined the cluster.
6 Enable allocation for the cluster.
7 Wait for the cluster to return to a green state.

Repeat this process for each node that needs to be upgraded. To disable allocation for
the cluster, you can use the cluster settings API with the following settings:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{
 "transient" : {
 "cluster.routing.allocation.enable" : "none"
 }
}'

Once you run this command, Elasticsearch will no longer rebalance shards around
the cluster. For instance, if a primary shard is lost for an index because the node it
resided on is shut down, Elasticsearch will still turn the replica shard into a new pri-
mary, but a new replica won’t be created. While in this state, you can safely shut down
the single Elasticsearch node and perform the upgrade.

 After upgrading the node, make sure that you reenable allocation for the cluster;
otherwise you’ll be wondering why Elasticsearch doesn’t automatically replicate
your data in the future! You can reenable allocation by setting the cluster.routing
.allocation.enable setting to all instead of none, like this:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{
 "transient" : {
 "cluster.routing.allocation.enable" : "all"
 }
}'

You need to perform these two book-ending steps, disabling allocation and reen-
abling allocation, for every node in the cluster being upgraded. If you were to per-
form them only once at the beginning and once at the end, Elasticsearch wouldn’t
allocate the shards that exist on the upgraded node every time you upgraded a node,
and your cluster would be red once you upgraded multiple nodes. By reenabling
allocation and waiting for the cluster to return to a green state after each node is

Setting this to none
means no shards can be
allocated in the cluster.

Setting this to all means all
shards can be allocated,
both primaries and replicas.
Licensed to Thomas Snead <n.ordickan@gmail.com>

276 CHAPTER 9 Scaling out
upgraded, your data is allocated and available when you move to the next node that
needs to be upgraded. Repeat these steps for each node that needs to be upgraded
until you have a fully upgraded cluster.

 There’s one more thing to mention in this section, and that’s indices that don’t
have replicas. The previous examples all take into account the data having at least a
single replica so that a node going down doesn’t remove access to the data. If you have
an index that has no replicas, you can use the decommissioning steps we covered in
section 9.3.1 to decommission the node by moving all the data off it before shutting it
down to perform the upgrade.

9.4.2 Minimizing recovery time for a restart

You may notice that even with the disable and enable allocation steps, it can still take a
while for the cluster to return to a green state when upgrading a single node. Unfortu-
nately, this is because the replication that Elasticsearch uses is for each shard segment,
rather than document-level. This means that the Elasticsearch node sending data to
be replicated is saying, “Do you have segments_1?” If it doesn’t have the file or the file
isn’t the same, the entire segment file is copied. A larger amount of data may be cop-
ied in the event that the documents are the same. Until Elasticsearch has a way of ver-
ifying the last document written in a segment file, it has to copy over any differing files
when replicating data between the primary shard and the replica shard.

 There are two different ways to make segment files identical on the primary and
replica shards. The first is using the optimize API that we’ll talk about in chapter 10 to
create a single, large segment for both the primary and the replica. The second is to tog-
gle the number of replicas to 0 and then back to a higher number; this ensures that all
replica copies have the same segment files as the primary shard. This means that for a
short period you’ll have only a single copy of the data, so beware of doing this in a pro-
duction environment!

 Finally, in order to minimize recovery time, you can also halt indexing data into
the cluster while you’re performing the node upgrade.

 Now that we’ve covered upgrading a node, let’s cover a helpful API for getting
information out of the cluster in a more human-friendly way: the _cat API.

9.5 Using the _cat API
Using the curl commands in sections 9.1, 9.2, and 9.3 is a great way to see what’s
going on with your cluster, but sometimes it’s helpful to see the output in a more
readable format (if you don’t believe us, try curling the http://localhost:9200/
_cluster/state URL on a large cluster and see how much information comes back!).
This is where the handy _cat API comes in. The _cat API provides helpful diagnos-
tic and debugging tools that print data in a more human-readable way, rather
than trying to page through a giant JSON response. The following listing shows
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9200/_cluster/state
http://localhost:9200/_cluster/state

277Using the _cat API
two of its commands for the equivalent health and node listing cURL statements
we already covered.

curl -XGET 'localhost:9200/_cluster/health?pretty'
{
 "cluster_name" : "elasticsearch",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 5,
 "active_shards" : 10,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0
}

% curl -XGET 'localhost:9200/_cat/health?v'
cluster status node.total node.data shards pri relo init
unassignelasticsearch red 2 2 42 22 0 0 23

% curl -XGET 'localhost:9200/_cluster/state/master_node,nodes&pretty'
{
 "cluster_name" : "elasticsearch",
 "master_node" : "5jDQs-LwRrqyrLm4DS_7wQ",
 "nodes" : {
 "5jDQs-LwRrqyrLm4DS_7wQ" : {
 "name" : "Kosmos",
 "transport_address" : "inet[/192.168.0.20:9300]",
 "attributes" : { }
 },
 "Rylg633AQmSnqbsPZwKqRQ" : {
 "name" : "Bolo",
 "transport_address" : "inet[/192.168.0.21:9300]",
 "attributes" : { }
 }
 }
}

% curl -XGET 'localhost:9200/_cat/nodes?v'
host heap.percent ram.percent load node.role master name
Xanadu.local 8 56 2.29 d * Bolo
Xanadu.local 4 56 2.29 d m Kosmos

In addition to the health and nodes endpoints, the _cat API has many other features, all
of which are useful for debugging different things your cluster may be undergoing. You
can see the full list of supported _cat APIs by running curl 'localhost:9200/_cat'.

Listing 9.5 Using the _cat API to find cluster health and nodes

Checking cluster
health using the
cluster health API

Checking cluster
health using the
_cat API

Retrieving a list of nodes
as well as which node is

the master using the
JSON API…

...and doing it with
the _cat API. The
node with "m" in the
master column is the
master node.
Licensed to Thomas Snead <n.ordickan@gmail.com>

278 CHAPTER 9 Scaling out

N
the

shard
one n

rep
While we’re looking at adding nodes to a cluster, why not look at how the shards are
distributed across each node using the _cat API in the following code listing. This is a
much easier way to see how shards are allocated in your cluster as opposed to the curl
command in listing 9.2.

% curl -XGET 'localhost:9200/_cat/allocation?v'
shards disk.used disk.avail disk.total disk.percent host ip node
 2 196.5gb 36.1gb 232.6gb 84 Xanadu.local

192.168.192.16 Molten Man
 2 196.5gb 36.1gb 232.6gb 84 Xanadu.local

192.168.192.16 Grappler

% curl -XGET 'localhost:9200/_cat/shards?v'
index shard prirep state docs store ip node
get-together 0 p STARTED 12 15.1kb 192.168.192.16 Molten Man
get-together 0 r STARTED 12 15.1kb 192.168.192.16 Grappler
get-together 1 r STARTED 8 11.4kb 192.168.192.16 Molten Man
get-together 1 p STARTED 8 11.4kb 192.168.192.16 Grappler

Using the _cat/allocation and _cat/shards APIs is also a great way to determine
when a node can be safely shut down after performing the decommission we dis-
cussed in section 9.3.1. Compare the output of the curl command from listing 9.2
to the output from the commands in listing 9.6; it’s much easier to read the _cat
API output!

 Now that you can see where the shards are located in your cluster, we should spend
some more time discussing how you should plan your Elasticsearch cluster to make
the most of your nodes and data.

_cat APIs
At the time of this writing, here are some of the most useful _cat APIs and what they
do. Be sure to check out the others!

■ allocation—Shows the number of shards allocated to each node
■ count—Counts the number of documents in the entire cluster or index
■ health—Displays the health of the cluster
■ indices—Displays information about existing indices
■ master—Shows what node is currently elected master
■ nodes—Shows various information about all nodes in the cluster
■ recovery—Shows the status of ongoing shard recoveries in the cluster
■ shards—Displays count, size, and names of shards in the cluster
■ plugins—Displays information about installed plugins

Listing 9.6 Using the _cat API to show shard allocation

The allocation command
lists the count of shards
across each node.

otice all
 primary
s are on
ode, the
licas on

another.
Licensed to Thomas Snead <n.ordickan@gmail.com>

279Scaling strategies
9.6 Scaling strategies
It might seem easy enough to add nodes to a cluster to increase the performance, but
this is actually a case where a bit of planning goes a long way toward getting the best
performance out of your cluster.

 Every use of Elasticsearch is different, so you’ll have to pick the best options for
your cluster based on how you’ll index data, as well as how you’ll search it. In general,
though, there are at least three things you’ll want to consider when planning for a
production Elasticsearch cluster: over-sharding, splitting data between indices and
shards, and maximizing throughput.

9.6.1 Over-sharding

Let’s start by talking about over-sharding. Over-sharding is the process whereby you
intentionally create a larger number of shards for an index so you have room to add
nodes and grow in the future; this is best illustrated by a diagram, so take a look at
figure 9.8.

In figure 9.8, you’ve created your get-together index with a single shard and no repli-
cas. But what happens when you add another node?

 Whoops! You’ve totally removed any benefit you get from adding nodes to the
cluster. By adding another node, you’re unable to scale because all of the indexing
and querying load will still be handled by the node with the single shard on it.
Because a shard is the smallest thing that Elasticsearch can move around, it’s a good
idea to always make sure you have at least as many primary shards in your cluster as
you plan to have nodes; if you currently have a 5-node cluster with 11 primary shards,
you have room to grow when you need to add more nodes to handle additional

get-together0

Node 1

Elasticsearch cluster

get-together0

Node 1 Node 2

Elasticsearch cluster

Node 2 is empty because

there are no shards that

can be moved here.

Figure 9.8 A single node with a single shard and two nodes trying to scale a single shard
Licensed to Thomas Snead <n.ordickan@gmail.com>

280 CHAPTER 9 Scaling out
requests. Using the same example, if you suddenly need more than 11 nodes, you
won’t be able to distribute the primary shards across nodes because you’ll have more
nodes than shards.

 That’s easy to fix, you might say: “I’ll just create an index with 100 primary shards!”
It may seem like a good idea at first, but there’s a hidden cost to each shard Elastic-
search has to manage. Because each shard is a complete Lucene index, as you learned
in chapter 1, each shard requires a number of file descriptors for each segment of the
index, as well as a memory overhead. By creating too large a number of shards for
an index, you may be using memory that could be better served to bolster perfor-
mance, or you could end up hitting the machine’s file descriptor or RAM limits. In
addition, when compressing your data, you’ll end up splitting the data across 100 dif-
ferent things, lowering the compression rate you would have gotten if you had picked
a more reasonable size.

 It’s worth noting that there is no perfect shard-to-index ratio for all use cases; Elas-
ticsearch picks a good default of five shards for the general case, but it’s always impor-
tant to think about how you plan on growing (or shrinking) in the future with regard
to the number of shards you create and index with. Don’t forget: once an index has
been created with a number of shards, the number of primary shards can never be
changed for that index! You don’t want to be in the position of having to re-index a
large portion of your data six months down the line because there wasn’t enough
planning up front. We’ll also talk more about this in the next chapter when we discuss
indexing in depth.

 Along the same lines as choosing the number of shards to create an index with, you’ll
also need to decide on how exactly to split your data across indices in Elasticsearch.

9.6.2 Splitting data into indices and shards

Unfortunately for now, there’s no way to increase or decrease the number of primary
shards in an index, but you could always plan your data to span multiple indices. This
is another perfectly valid way to split data. Taking our get-together example, there’s
nothing stopping you from creating an index for every different city an event occurs
in. For example, if you expect to have a larger number of events in New York than Sac-
ramento, you could create a sacramento index with two primary shards and a newyork
index with four primary shards, or you could segment the data by date, creating an
index for each year an event occurs or is created: 2014, 2015, 2016, and so on. Seg-
menting data in this way can also be helpful when searching because the segmenta-
tion is handled by putting the right data in the right place; if the customer wants to
search only for events or groups from the year 2014 or 2015, you’ll have to search only
those indices rather than the entire get-together index.

 Another way to plan using indices is with aliases. An alias acts like a pointer to an
index or a set of indices. An alias also allows you to change the indices that it points to
at any time. This is incredibly useful for segmenting your data in a semantic way; you
Licensed to Thomas Snead <n.ordickan@gmail.com>

281Scaling strategies
could create an alias called last-year that points to 2015; then, when January 1, 2016
rolls around, you can change the alias to point to the 2015 index. This technique is
commonly used when indexing date-based information (like log files) so that data can
be segmented by date on a monthly/weekly/daily basis and an alias named current
can be used to always point to the data that should be searched without having to
change the name of the index being searched every time the segment rolls over.
Again, aliases allow an incredible level of flexibility and have almost zero overhead, so
experimentation is encouraged. We’ll talk in more depth about aliases later on in
this chapter.

 When creating indices, don’t forget that because each index has its own shards,
you’ll still incur the overhead of creating a shard, so make sure not to create too many
shards by creating too many indices and using resources that could be better spent
handling requests. Once you know how your data will be laid out in the cluster, you
can work on tweaking the node configuration to maximize your throughput.

9.6.3 Maximizing throughput

Maximizing throughput is one of those fuzzy, hazy terms that can mean an awful lot
of things. Are you trying to maximize the indexing throughput? Make searches
faster? Execute more searches at once? There are different ways to tweak Elastic-
search to accomplish each task. For example, if you received thousands of new
groups and events, how would you go about indexing them as fast as possible? One
way to make indexing faster is to temporarily reduce the number of replica shards in
your cluster. When indexing data, by default the request won’t complete until the
data exists on the primary shard as well as all replicas, so it may be advantageous to
reduce the number of replicas to one (or zero if you’re okay with the risk) while
indexing and then increase the number back to one or more once the period of
heavy indexing has completed.

 What about searches? Searches can be made faster by adding more replicas
because either a primary or a replica shard can be used to search on. To illustrate this,
check out figure 9.9, which shows a three-node cluster where the last node can’t help
with search requests until it has a copy of the data.

 But don’t forget that creating more shards in an Elasticsearch cluster does come
with the small overhead in file descriptors and memory. If the volume of searches is
getting too high for the nodes in the cluster to keep up, consider adding nodes with
node.data and node.master both set to false. These nodes can then be used to han-
dle incoming requests, distribute the request to the data nodes, and collect the results
for responses. This way, the nodes searching the shards don’t have to handle connec-
tions from search clients; they only need to search shards. We’ll talk more about dif-
ferent ways of speeding up both indexing and searching in the next chapter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

282 CHAPTER 9 Scaling out
9.7 Aliases
Now let’s talk about one of the easiest and potentially most useful features of Elastic-
search: aliases. Aliases are exactly what they sound like; they’re a pointer or a name
you can use that corresponds to one or more concrete indices. This turns out to be
quite useful because of the flexibility it provides when scaling your cluster and

get-together0

Node 1

get-together0

Node 2 Node 3

Node 3 has no copy of the

get-together 0 shard, so it cannot

handle search requests.

Client

Queries can be handled by all copies

of the data, in this case the copy on

node 1 and the copy on node 2.

get-together0

Node 1

get-together0

Node 2 Node 3

Now that there is an additional

replica, node 3 can perform

queries and aggregations.

Even more copies of the data

are available, so more nodes can

handle search requests.

get-together0

Client

Figure 9.9 Additional replicas handling search and aggregations
Licensed to Thomas Snead <n.ordickan@gmail.com>

283Aliases
managing how data is laid out across your indices. Even when using an Elasticsearch
cluster with only a single index, use an alias. You’ll thank us later for the flexibility it
will give you.

9.7.1 What is an alias, really?

You may be wondering what an alias is exactly and what kind of overhead is involved
with Elasticsearch in creating one. An alias spends its life inside the cluster state, man-
aged by the master node; this means that if you have an alias called idaho that points
to an index named potatoes, the overhead is an extra key in the cluster state map that
maps the name idaho to the concrete index potatoes. This means that compared to
additional indices, aliases are much lighter in weight; thousands of them can be main-
tained without negatively impacting your cluster. That said, we would caution against
creating hundreds of thousands or millions of aliases because at that point, even the
minimal overhead of a single entry in a map can cause the cluster state to grow to a
large size. This means operations that create a new cluster state will take longer because
the entire cluster state is sent to each node every time it changes.

WHY ARE ALIASES USEFUL?
We recommend that everyone use an alias for their Elasticsearch indices because it
will give a lot more flexibility in the future when it comes to re-indexing. Let’s say that
you start off by creating an index with a single primary shard and then later decide
that you need more capacity on your index. If you were using an alias for the original
index, you can now change that alias to point to an additionally created index without
having to change the name of the index you’re searching (assuming you’re using an
alias for searching from the beginning).

 Another useful feature can be creating windows into different indices; for exam-
ple, if you create daily indices for your data, you may want a sliding window of the last
week’s data by creating an alias called last-7-days; then every day when you create a
new daily index, you can add it to the alias while simultaneously removing the eight-
day-old index.

MANAGING ALIASES

Aliases are created using the dedicated aliases API endpoint and a list of actions. Each
action is a map with either an add or remove action followed by the index and alias on
which to apply the operation. This will be much clearer with the example shown in
the next listing.

curl -XPOST 'localhost:9200/_aliases' -d'
{
 "actions": [
 {
 "add" : {
 "index": "get-together",
 "alias": "gt-alias"

Listing 9.7 Adding and removing aliases

The operation—in
this case, adding an
index to an alias

The index get-together will be
added to the alias gt-alias.
Licensed to Thomas Snead <n.ordickan@gmail.com>

284 CHAPTER 9 Scaling out
 }
 },
 {
 "remove": {
 "index": "old-get-together",
 "alias": "gt-alias"
 }
 }
]
}'

In this listing the get-together index is being added to an alias named gt-alias, and the
made-up index old-get-together is being removed from the alias gt-alias. The act of
adding an index to an alias creates it, and removing all indices that an alias points to
removes the alias; there’s no manual alias creation and deletion. But the alias opera-
tions will fail if the index doesn’t exist, so keep that in mind. You can specify as many
add and remove actions as you like. It’s important to recognize that these actions will
all occur atomically, which means in the previous example there’ll be no moment of
time in which the gt-alias alias points to both the get-together and old-get-together
indices. Although the compound Alias API call we just discussed may suit your needs,
it’s important to note that individual actions can be performed on the Alias API, using
the common HTTP methods that Elasticsearch has standardized on. For instance, the
following series of calls would have the same effect as the compound actions call
shown previously:

curl -XPUT 'http://localhost:9200/get-together/_alias/gt-alias'

curl -XDELETE 'http://localhost:9200/old-get-together/_alias/gt-alias'

While we’re exploring single-call API methods, this section wouldn’t be complete with-
out covering the API in more detail, specifically those endpoints that can come in
handy in creating and listing operations.

9.7.2 Alias creation

When creating aliases, there are many options available via the API endpoint. For
instance, you can create aliases on a specific index, many indices, or a pattern that
matches index names:

curl -XPUT 'http://localhost:9200/{index}/_alias/{alias}'

curl -XPUT 'http://localhost:9200/myindex/_alias/myalias'
curl -XPUT 'http://localhost:9200/_all/_alias/myalias'
curl -XPUT 'http://localhost:9200/logs-2013,logs-2014/_alias/myalias'
curl -XPUT 'http://localhost:9200/logs-*/_alias/myalias'

A remove operation
to remove an index
from an alias

The index old-get-together will be
removed from the alias gt-alias.

Index name, _all, a comma-delimited list
of index names, or a pattern to match

The name of the alias
you’re creating

Create alias myalias
on index myindex.

Create alias
myalias on
all indices.

Create alias myalias on both indices,
logs-2013 and logs-2014.

Create alias myalias on all index
names that match the pattern logs-*.
Licensed to Thomas Snead <n.ordickan@gmail.com>

285Aliases
Alias deletion accepts the same path parameter format:

curl -XDELETE 'localhost:9200/{index}/_alias/{alias}'

You can retrieve all of the aliases that a concrete index points to by issuing a GET
request on an index with _alias, or you can retrieve all indices and the aliases that
point to them by leaving out the index name. Retrieving the aliases for an index is
shown in the next listing.

curl 'localhost:9200/get-together/_alias?pretty'
{
 "get-together" : {
 "aliases" : {
 "gt-alias" : { }
 }
 }
}

In addition to the _alias endpoint on an index, you have a number of different ways
to get the alias information from an index:

curl -XGET 'localhost:9200/{index}/_alias/{alias}'

curl -XGET 'http://localhost:9200/myindex/_alias/myalias'
curl -XGET 'http://localhost:9200/myindex/_alias/*'
curl -XGET 'http://localhost:9200/_alias/myalias'
curl -XGET 'http://localhost:9200/_alias/logs-*'

MASKING DOCUMENTS WITH ALIAS FILTERS

Aliases have some other neat features as well; they can be used to automatically apply
a filter to queries that are executed. For example, with your get-together data it could
be useful to have an alias that points only to the groups that contain the elastic-
search tag, so you can create an alias that does this filtering automatically, as shown in
the following listing.

$ curl -XPOST 'localhost:9200/_aliases' -d'
{
 "actions": [
 {
 "add": {
 "index": "get-together",

Listing 9.8 Retrieving the aliases pointing to a specific index

Listing 9.9 Creating a filtered alias

The gt-alias alias
points to the
get-together index.

Index name, _all, a comma-delimited
list of index names, a pattern to

match, or can be left blank

The name of the alias you’re
retrieving. Can be either an alias
name, a comma-delimited list,
or a pattern to match against.

Retrieve alias
myalias for
index myindex.

Retrieve all aliases
for index myindex.Retrieve all indices

with alias myalias.
Retrieve all indices with aliases that

match the pattern logs-*.
Licensed to Thomas Snead <n.ordickan@gmail.com>

286 CHAPTER 9 Scaling out

y.
 "alias": "es-groups",
 "filter": {
 "term": {"tags": "elasticsearch"}
 }
 }
 }
]
}'
{"acknowledged":true}

$ curl 'localhost:9200/get-together/group/_count' -d'
{
 "query": {
 "match_all": {}
 }
}'
{"count":5,"_shards":{"total":2,"successful":2,"failed":0}}

$ curl 'localhost:9200/es-groups/group/_count' -d'
{
 "query": {
 "match_all": {}
 }
}'
{"count":2,"_shards":{"total":2,"successful":2,"failed":0}}

Here you can see that the es-groups alias contains only two groups instead of five. This
is because it’s automatically applying the term filter for groups that contain the tag
elasticsearch. This has a lot of applications; if you’re indexing sensitive data, for
instance, you can create a filtered alias to ensure that anyone using that alias can’t see
data they’re not meant to see.

 There’s one more feature that aliases can provide, routing, but before we talk
about using it with an alias, we’ll talk about using it in general.

9.8 Routing
In chapter 8, we talked about how documents end up in a particular shard; this pro-
cess is called routing the document. To refresh your memory, routing a document
occurs when Elasticsearch hashes the ID of the document, either specified by you or
generated by Elasticsearch, to determine which shard a document should be indexed
into. Elasticsearch also allows you to manually specify the routing of a document when
indexing, which is what you do when using parent-child relationships because the
child document has to be in the same shard as the parent document.

 Routing can also use a custom value for hashing, instead of the ID of the docu-
ment. By specifying the routing query parameter on the URL, that value will be
hashed and used instead of the ID:

curl -XPOST 'localhost:9200/get-together/group/9?routing=denver' -d'{
 "title": "Denver Knitting"
}'

Adding a filter for the
es-groups alias for the
elasticsearch tag

Counting all the
groups in the get-
together index

Five groups in
the get-together
index

Counting all the groups
in the es-groups alias

Two groups in the
es-groups alias; the
results have been
filtered automaticall
Licensed to Thomas Snead <n.ordickan@gmail.com>

287Routing
In this example, denver is the value that’s hashed to determine which shard the docu-
ment ends up in, instead of 9, the document’s ID. Routing can be useful for scaling
strategies, which is why we talk about it in detail in this chapter.

9.8.1 Why use routing?

If you don’t use routing at all, Elasticsearch will ensure that your documents are dis-
tributed in an even manner across all the different shards, so why would you want to
use routing? Custom routing allows you to collect multiple documents sharing a rout-
ing value into a single shard, and once these documents are in the same index, it
allows you to route certain queries so that they are executed on a subset of the shards
for an index. Sound confusing? We’ll go over it in more detail to clarify what we mean.

9.8.2 Routing strategies

Routing is a strategy that takes effort in two areas: you’ll need to pick good routing val-
ues while you’re indexing documents, and you’ll need to reuse those values when you
perform queries. With our get-together example, you first need to decide on a good
way to separate each document. In this case, pick the city that a get-together group or
event happens to use as the routing value. This is a good choice for a routing value
because the cities vary widely enough that you have quite a few values to pick from,
and each event and group are already associated with a city, so it’s easy to extract that
from a document before indexing. If you were to pick something that had only a few
different values, you could easily end up with unbalanced shards for the index. If
there are only three possible routing values for all documents, all documents will end
up routed between a maximum of three shards. It’s important to pick a value that will
have enough cardinality to spread data among shards in an index.

 Now that you’ve picked what you want to use for the routing value, you need to spec-
ify this routing value when indexing documents, as shown in the listing that follows.

% curl -XPOST 'localhost:9200/get-together/group/10?routing=denver' -d'
{
 "name": "Denver Ruby",
 "description": "The Denver Ruby Meetup"
}'

% curl -XPOST 'localhost:9200/get-together/group/11?routing=boulder' -d'
{
 "name": "Boulder Ruby",
 "description": "Boulderites that use Ruby"
}'

% curl -XPOST 'localhost:9200/get-together/group/12?routing=amsterdam' -d'
{
 "name": "Amsterdam Devs that use Ruby",
 "description": "Mensen die genieten van het gebruik van Ruby"
}'

Listing 9.10 Indexing documents with custom routing values

Indexing a document with
a routing value of denver

Indexing a document with
the routing value boulder
Licensed to Thomas Snead <n.ordickan@gmail.com>

288 CHAPTER 9 Scaling out
In this example, you use three different routing values—denver, boulder, and
amsterdam—for three different documents. This means that instead of hashing the
IDs 10, 11, and 12 to determine which shard to put the document in, you use the rout-
ing values instead. On the index side, this doesn’t help you much; the real benefit
comes when you combine routing on the query side, as the next listing shows. On the
query side, you can combine multiple routing values with a comma.

% curl -XPOST 'localhost:9200/get-together/group/
_search?routing=denver,amsterdam' -d'

{
 "query": {
 "match": {
 "name": "ruby"
 }
 }
}'
{
 ...
 "hits": {
 "hits": [
 {
 "_id": "10",
 "_index": "get-together",
 "_score": 1.377483,
 "_source": {
 "description": "The Denver Ruby Meetup",
 "name": "Denver Ruby"
 },
 "_type": "group"
 },
 {
 "_id": "12",
 "_index": "get-together",
 "_score": 0.9642381,
 "_source": {
 "description": "Mensen die genieten van het gebruik van

Ruby",
 "name": "Amsterdam Devs that use Ruby"
 },
 "_type": "group"
 }
],
 "max_score": 1.377483,
 "total": 2
 }
}

Interesting! Instead of returning all three groups, only two were returned. So what
actually happened? Internally, when Elasticsearch received the request, it hashed the
values of the two provided routing values, denver and amsterdam, and then executed

Listing 9.11 Specifying routing when querying

Executing a query with a
routing value of denver
and amsterdam
Licensed to Thomas Snead <n.ordickan@gmail.com>

289Routing

Exe
the s
shar
with

ro
the query on all the shards they hashed to. In this case denver and amsterdam both
hash to the same shard, and boulder hashes to a different shard.

 Extrapolate this to hundreds of thousands of groups, in hundreds of cities, by spec-
ifying the routing for each group both while indexing and while querying, and you’re
able to limit the scope of where a search request is executed. This can be a great scal-
ing improvement for an index that might have 100 shards; instead of running the
query on all 100 shards, it can be limited and thus run faster with less impact to your
Elasticsearch cluster.

 In the previous example, denver and amsterdam happen to route to the same
shard value, but they could have just as easily hashed to different shard values. How
can you tell which shard a request will be executed on? Thankfully, Elasticsearch has
an API that can show you the nodes and shards a search request will be performed on.

9.8.3 Using the _search_shards API to determine where a search
is performed

Let’s take the prior example and use the search shards API to see which shards the
request is going to be executed on, with and without the routing values, as shown in
the following listing.

% curl -XGET 'localhost:9200/get-together/_search_shards?pretty'
{
 "nodes" : {
 "aEFYkvsUQku4PTzNzTuuxw" : {
 "name" : "Captain Atlas",
 "transport_address" : "inet[/192.168.192.16:9300]"
 }
 },
 "shards" : [[{
 "state" : "STARTED",
 "primary" : true,
 "node" : "aEFYkvsUQku4PTzNzTuuxw",
 "relocating_node" : null,
 "shard" : 0,
 "index" : "get-together"
 }], [{
 "state" : "STARTED",
 "primary" : true,
 "node" : "aEFYkvsUQku4PTzNzTuuxw",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "get-together"
 }]]
}

% curl -XGET 'localhost:9200/get-together/
_search_shards?pretty&routing=denver'

Listing 9.12 Using the _search_shards API with and without routing

cuting
earch

ds API
out a
uting
value

Nodes the request
will be performed on

Both shard 0 and
shard 1 will perform
the request and
return results.

Using the search shards
API with the routing
value denver
Licensed to Thomas Snead <n.ordickan@gmail.com>

290 CHAPTER 9 Scaling out
{
 "nodes" : {
 "aEFYkvsUQku4PTzNzTuuxw" : {
 "name" : "Captain Atlas",
 "transport_address" : "inet[/192.168.192.16:9300]"
 }
 },
 "shards" : [[{
 "state" : "STARTED",
 "primary" : true,
 "node" : "aEFYkvsUQku4PTzNzTuuxw",
 "relocating_node" : null,
 "shard" : 1,
 "index" : "get-together"
 }]]
}

You can see that even though there are two shards in the index, when the routing
value denver is specified, only shard 1 is going to be searched. You’ve effectively cut
the amount of data the search must execute on by half!

 Routing can be useful when dealing with indices that have a large number of
shards, but it’s definitely not required for regular usage of Elasticsearch. Think of it as
a way to scale more efficiently in some cases, and be sure to experiment with it.

9.8.4 Configuring routing

It can also be useful to tell Elasticsearch that you want to use custom routing for all
documents and to refuse to allow you to index a document without a custom routing
value. You can configure this through the mapping of a type. For example, to create
an index called routed-events and required routing for each event, you can use the
code in the following listing.

% curl -XPOST 'localhost:9200/routed-events' -d'
{
 "mappings": {
 "event" : {
 "_routing" : {
 "required" : true
 },
 "properties": {
 "name": {
 "type": "string"
 }
 }
 }
 }
}'
{"acknowledged":true}

% curl -XPOST 'localhost:9200/routed-events/event/1' -d'
{"name": "my event"}'

Listing 9.13 Defining routing as required in a type’s mapping

Only shard 1 will
perform the
request.

Creating an index
named routed-events

Specifying that all
documents for the event
type require routing

Attempted
indexing of a
document without
a routing value
Licensed to Thomas Snead <n.ordickan@gmail.com>

291Routing

{"error":"RoutingMissingException[routing is required for [routed-events]/
[event]/[1]]","status":400}

There’s one more way to use routing, and that’s by associated a routing value with
an alias.

9.8.5 Combining routing with aliases

As you saw in the previous section, aliases are a powerful and flexible abstraction on top
of indices. They can also be used with routing to automatically apply routing values
when querying or when indexing, assuming the alias points to a single index. If you
try to index into an alias that points to more than a single index, Elasticsearch will
return an error because it doesn’t know which concrete index the document should
be indexed into.

 Reusing the previous example, you can create an alias called denver-events that
automatically filters out events with “denver” in the name and adds “denver” to the
routing when searching and indexing to limit where queries are executed, as shown in
the next listing.

% curl -XPOST 'localhost:9200/_aliases' -d'
{
 "actions" : [
 {
 "add" : {
 "index": "get-together",
 "alias": "denver-events",
 "filter": { "term": { "name": "denver" } },
 "routing": "denver"
 }
 }
]
}'
{"acknowledged":true}

% curl -XPOST 'localhost:9200/denver-events/_search?pretty' -d'
{
 "query": {
 "match_all": {}
 },
 "fields": ["name"]
}'
{
 ...
 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "get-together",

Listing 9.14 Combining routing with an alias

Elasticsearch returns an error because
required routing value is missing

Add an alias to the
get-together index.

The alias will be called
denver-events.

Filter results by
documents whose names
contain “denver”.

Automatically use the
routing value denver.

Query for all
documents, using
the denver-events
alias.
Licensed to Thomas Snead <n.ordickan@gmail.com>

292 CHAPTER 9 Scaling out
 "_type" : "group",
 "_id" : "2",
 "_score" : 1.0,
 "fields" : {
 "name" : ["Elasticsearch Denver"]
 }
 }, {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "4",
 "_score" : 1.0,
 "fields" : {
 "name" : ["Boulder/Denver big data get-together"]
 }
 }, {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "10",
 "_score" : 1.0,
 "fields" : {
 "name" : ["Denver Ruby"]
 }
 }]
 }
}

You can also use the alias you just created for indexing. When indexing with the den-
ver-events alias, it’s the same as if documents were indexed with the routing=denver
query string parameter. Because aliases are lightweight, you can create as many as you
need when using custom routing in order to scale out better.

9.9 Summary
You should now have a better understanding of how Elasticsearch clusters are formed
and how they’re made of multiple nodes, each containing a number of indices, which
in turn are made up of a number of shards. Here are some of the other things we
talked about in this chapter:

■ What happens when nodes are added to an Elasticsearch cluster
■ How master nodes are elected
■ Removing and decommissioning nodes
■ Using the _cat API to understand your cluster
■ Over-sharding and how it can be applied to plan for future growth of a cluster
■ How to use aliases and routing for cluster flexibility and scaling

In chapter 10 we’ll continue talking about scaling from the perspective of improving
performance in your Elasticsearch cluster.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Improving performance
Elasticsearch is commonly referred to as fast when it comes to indexing, searching,
and extracting statistics through aggregations. Fast is a vague concept, making the
“How fast?” question inevitable. As with everything, “how fast” depends on the par-
ticular use case, hardware, and configuration.

 In this chapter, our aim is to show you the best practices for configuring Elastic-
search so you can make it perform well for your use case. In every situation, you
need to trade something for speed, so you need to pick your battles:

■ Application complexity—In the first part of the chapter, we’ll show how you
can group multiple requests, such as index, update, delete, get, and
search, in a single HTTP call. This grouping is something your application

This chapter covers
■ Bulk, multiget, and multisearch APIs
■ Refresh, flush, merge, and store
■ Filter caches and tuning filters
■ Tuning scripts
■ Query warmers
■ Balancing JVM heap size and OS caches
293

Licensed to Thomas Snead <n.ordickan@gmail.com>

294 CHAPTER 10 Improving performance
needs to be aware of, but it can speed up your overall performance by a huge
margin. Think 20 or 30 times better indexing because you’ll have fewer net-
work trips.

■ Indexing speed for search speed or the other way around—In the second section of the
chapter, we’ll take a deeper look at how Elasticsearch deals with Lucene seg-
ments: how refreshes, flushes, merge policies, and store settings work and how
they influence index and search performance. Often, tuning for index perfor-
mance has a negative impact on searches and vice versa.

■ Memory—A big factor in Elasticsearch’s speed is caching. Here’s we’ll dive into
the details of the filter cache and how to use filters to make the best use of it.
We’ll also look at the shard query cache and how to leave enough room for
the operating system to cache your indices, while still leaving enough heap
size for Elasticsearch. If running a search on cold caches gets unacceptably
slow, you’ll be able to keep caches warm by running queries in the back-
ground with index warmers.

■ All of the above—Depending on the use case, the way you analyze the text at index
time and the kind of queries you use can be more complicated, slow down other
operations, or use more memory. In the last part of the chapter, we’ll explore
the typical tradeoffs you’ll have while modeling your data and your queries:
should you generate more terms when you index or look through more terms
when you search? Should you take advantage of scripts or try to avoid them?
How should you handle deep paging?

We’ll discuss all these points and answer these questions in this chapter. By the end,
you’ll have learned how to make Elasticsearch fast for your use case, and you’ll get a
deeper understanding of how it works along the way. Grouping multiple operations in
a single HTTP request is often the easiest way to improve performance, and it gives the
biggest performance gain. Let’s start by looking at how you can do that through the bulk,
multiget, and multisearch APIs.

10.1 Grouping requests
The single best thing you can do for faster indexing is to send multiple documents to
be indexed at once via the bulk API. This will save network round-trips and allow for
more indexing throughput. A single bulk can accept any indexing operation; for exam-
ple, you can create documents or overwrite them. You can also add update or delete
operations to a bulk; it’s not only for indexing.

 If your application needs to send multiple get or search operations at once, there
are bulk equivalents for them, too: the multiget and multisearch APIs. We’ll explore
them later, but we’ll start with the bulk API because in production it’s “the way” to
index for most use cases.
Licensed to Thomas Snead <n.ordickan@gmail.com>

295Improving performance
10.1.1 Bulk indexing, updating, and deleting

So far in this book you’ve indexed documents one at a time. This is fine for playing
around, but it implies performance penalties from at least two directions:

■ Your application has to wait for a reply from Elasticsearch before it can move on.
■ Elasticsearch has to process all data from the request for every indexed document.

If you need more indexing speed, Elasticsearch offers a bulk API, which you can use to
index multiple documents at once, as shown in figure 10.1.

As the figure illustrates, you can do that using HTTP, as you’ve used for indexing docu-
ments so far, and you’ll get a reply containing the results of all the indexing requests.

INDEXING IN BULKS

In listing 10.1 you’ll index a bulk of two documents. To do that, you have to do an
HTTP POST to the _bulk endpoint, with data in a specific format. The format has the
following requirements:

■ Each indexing request is composed of two JSON documents separated by a new-
line: one with the operation (index in your case) and metadata (like index,
type, and ID) and one with the document contents.

■ JSON documents should be one per line. This implies that each line needs to
end with a newline (\n, or the ASCII 10 character), including the last line of the
whole bulk of requests.

Application

Elasticsearch

Indexing one diagram at a time

Index

doc1

doc1

succeeded

Index

doc2

doc2

failed

Application

Elasticsearch

Bulk indexing

Index: doc1

Index: doc2

doc1: succeeded

doc2: succeeded

Figure 10.1 Bulk indexing allows you to send multiple documents in the same request.
Licensed to Thomas Snead <n.ordickan@gmail.com>

296 CHAPTER 10 Improving performance

Ev
need
in a

(inclu

and
pretty
REQUESTS_FILE=/tmp/test_bulk
echo '{"index":{"_index":"get-together", "_type":"group", "_id":"10"}}
{"name":"Elasticsearch Bucharest"}
{"index":{"_index":"get-together", "_type":"group", "_id":"11"}}
{"name":"Big Data Bucharest"}
' > $REQUESTS_FILE
curl -XPOST localhost:9200/_bulk --data-binary @$REQUESTS_FILE

For each of the two indexing requests, in the first line you add the operation type and
some metadata. The main field name is the operation type: it indicates what Elastic-
search has to do with the data that follows. For now, you’ve used index for indexing,
and this operation will overwrite documents with the same ID if they already exist. You
can change that to create, to make sure documents don’t get overwritten, or even
update or delete multiple documents at once, as you’ll see later.

 _index and _type indicate where to index each document. You can put the index
name or both the index and the type in the URL. This will make them the default
index and type for every operation in the bulk. For example:

curl -XPOST localhost:9200/get-together/_bulk --data-binary @$REQUESTS_FILE

or

curl -XPOST localhost:9200/get-together/group/_bulk --data-binary
@$REQUESTS_FILE

You can then omit the _index and _type fields from the request itself. If you specify
them, index and type values from the request override those from the URL.

 The _id field indicates the ID of the document you’re indexing. If you omit that,
Elasticsearch will automatically generate an ID for you, which is helpful if you don’t
already have a unique ID for your documents. Logs, for example, work well with gen-
erated IDs because they don’t typically have a natural unique ID and you don’t need to
retrieve logs by ID.

 If you don’t need to provide IDs and you index all documents in the same index
and type, the bulk request from listing 10.1 gets quite a lot simpler, as shown in the fol-
lowing listing.

Listing 10.1 Indexing two documents in a single bulk

Using a file and pointing to it via
--data-binary @file-name to
preserve newline characters

ery JSON
s to end
 newline
ding the
last one)
 can’t be
-printed.

First line of the requests
contains operation (index)

and metadata (index,type,ID)

Document
content

Using a file and pointing to it via
--data-binary @file-name to
preserve newline characters
Licensed to Thomas Snead <n.ordickan@gmail.com>

297Grouping requests
REQUESTS_FILE=/tmp/test_bulk
echo '{"index":{}}
{"name":"Elasticsearch Bucharest"}
{"index":{}}
{"name":"Big Data Bucharest"}
' > $REQUESTS_FILE
URL='localhost:9200/get-together/group'
curl -XPOST $URL/_bulk?pretty --data-binary @$REQUESTS_FILE

The result of your bulk insert should be a JSON containing the time it took to index
your bulk and the responses for each operation. There’s also an errors flag, which
indicates whether any of the operations failed. The whole response should look some-
thing like this:

{
 "took" : 2,
 "errors" : false,
 "items" : [{
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "AUyDuQED0pziDTnH-426",
 "_version" : 1,
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "AUyDuQED0pziDTnH-426",
 "_version" : 1,
 "status" : 201
 }
 }]
}

Note that because you’ve used automatic ID generation, the index operations were
changed to create. If one document can’t be indexed for some reason, it doesn’t
mean the whole bulk has failed, because items from the same bulk are independent of
each other. That’s why you get a reply for each operation, instead of one for the whole
bulk. You can use the response JSON in your application to determine which opera-
tion succeeded and which failed.

TIP When it comes to performance, bulk size matters. If your bulks are too
big, they take too much memory. If they’re too small, there’s too much net-
work overhead. The sweet spot depends on document size—you’d put a few
big documents or more smaller ones in a bulk—and on the cluster’s fire-
power. A big cluster with strong machines can process bigger bulks faster and
still serve searches with decent performance. In the end, you have to test

Listing 10.2 Indexing two documents in the same index and type with automatic IDs

Specifying only the operation, because
index and type are provided in the URL
and IDs will be automatically generated

Specifying the
index and type
in the URL
Licensed to Thomas Snead <n.ordickan@gmail.com>

298 CHAPTER 10 Improving performance
and find the sweet spot for your use case. You can start with values like 1,000
small documents (such as logs) per bulk and increase until you don’t get a
significant gain. Be sure to monitor your cluster in the meantime, as we’ll dis-
cuss in chapter 11.

UPDATING OR DELETING IN BULKS

Within a single bulk, you can have any number of index or create operations and
also any number of update or delete operations.

 update operations look similar to the index/create operations we just discussed,
except for the fact that you must specify the ID. Also, the document content would
contain doc or script according to the way you want to update, just as you specified
doc or script in chapter 3 when you did individual updates.

 delete operations are a bit different than the rest because you have no document
content. You just have the metadata line, like with updates, which has to contain the
document’s ID.

 In the next listing you have a bulk that contains all four operations: index, create,
update, and delete.

echo '{"index":{}}
{"title":"Elasticsearch Bucharest"}
{"create":{}}
{"title":"Big Data in Romania"}
{"update":{"_id": "11"}}
{"doc":{"created_on" : "2014-05-06"} }
{"delete":{"_id": "10"}}
' > $REQUESTS_FILE
URL='localhost:9200/get-together/group'
curl -XPOST $URL/_bulk?pretty --data-binary @$REQUESTS_FILE
expected reply
 "took" : 37,
 "errors" : false,
 "items" : [{
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "rVPtooieSxqfM6_JX-UCkg",
 "_version" : 1,
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "8w3GoNg5T_WEIL5jSTz_Ug",
 "_version" : 1,
 "status" : 201
 }
 }, {

Listing 10.3 Bulk with index, create, update, and delete

Update operation:
specify the ID and the
partial document.

Delete operation:
no document is
needed, just the ID.
Licensed to Thomas Snead <n.ordickan@gmail.com>

299Grouping requests
 "update" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "11",
 "_version" : 2,
 "status" : 200
 }
 }, {
 "delete" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "10",
 "_version" : 2,
 "status" : 200,
 "found" : true

If the bulk APIs can be used to group multiple index, update, and delete operations
together, you can do the same for search and get requests with the multisearch and
multiget APIs, respectively. We’ll look at these next.

10.1.2 Multisearch and multiget APIs

The benefit of using multisearch and multiget is the same as with bulks: when you
have to do multiple search or get requests, grouping them together saves time other-
wise spent on network latency.

MULTISEARCH

One use case for sending multiple search requests at once occurs when you’re search-
ing in different types of documents. For example, let’s assume you have a search box
in your get-together site. You don’t know whether a search is for groups or for events,
so you’re going to search for both and offer different tabs in the UI: one for groups
and one for events. Those two searches would have completely different scoring crite-
ria, so you’d run them in different requests, or you could group these requests
together in a multisearch request.

 The multisearch API has many similarities with the bulk API:

■ You hit the _msearch endpoint, and you may or may not specify an index and a
type in the URL.

■ Each request has two single-line JSON strings: the first may contain parameters
like index, type, routing value, or search type—that you’d normally put in the
URI of a single request. The second line contains the query body, which is nor-
mally the payload of a single request.

The listing that follows shows an example multisearch request for events and groups
about Elasticsearch.

Update and delete
operations increase
the version, like
regular updates
and deletes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

300 CHAPTER 10 Improving performance

Fo
other

you
heade

bo

resp
an a
ind

r

echo '{"index" : "get-together", "type": "group"}
{"query" : {"match" : {"name": "elasticsearch"}}}
{"index" : "get-together", "type": "event"}
{"query" : {"match" : {"title": "elasticsearch"}}}
' > request
curl localhost:9200/_msearch?pretty --data-binary @request
reply
{
 "responses" : [{
 "took" : 4,
[...]
 "hits" : [{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "2",
 "_score" : 1.8106999,
 "_source":{
 "name": "Elasticsearch Denver",
[...]
 }, {
 "took" : 7,
[...]
 "hits" : [{
 "_index" : "get-together",
 "_type" : "event",
 "_id" : "103",
 "_score" : 0.9581454,
 "_source":{
 "host": "Lee",
 "title": "Introduction to Elasticsearch",
[…]

MULTIGET

Multiget makes sense when some processing external to Elasticsearch requires you to
fetch a set of documents without doing any search. For example, if you’re storing sys-
tem metrics and the ID is a timestamp, you might need to retrieve specific metrics
from specific times without doing any filtering. To do that, you’d call the _mget end-
point and send a docs array with the index, type, and ID of the documents you want to
retrieve, as in the next listing.

curl localhost:9200/_mget?pretty -d '{
 "docs" : [
 {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1"

Listing 10.4 Multisearch request for events and groups about Elasticsearch

Listing 10.5 _mget endpoint and docs array with index, type, and ID of documents

The header of each search contains data
that can go to the URL of a single search. The body contains the

query, as you have
with single searches.

r every
search,
 have a
r and a
dy line.

As with bulk requests,
it’s important to
preserve newline
characters.

The
onse is
rray of
ividual
search
esults.

Reply for the
first query
about groups

All replies look
like individual
query replies.

The docs array identifies
all documents that you
want to retrieve.
Licensed to Thomas Snead <n.ordickan@gmail.com>

301Optimizing the handling of Lucene segments
 },
 {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "2"
 }
]
}'
reply
{
 "docs" : [{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "_source":{
 "name": "Denver Clojure",
[...]
 }, {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "2",
 "_version" : 1,
 "found" : true,
 "_source":{
 "name": "Elasticsearch Denver",
[...]

As with most other APIs, the index and type are optional, because you can also put
them in the URL of the request. When the index and type are common for all IDs, it’s
recommended to put them in the URL and put the IDs in an ids array, making the
request from listing 10.5 much shorter:

% curl localhost:9200/get-together/group/_mget?pretty -d '{
 "ids" : ["1", "2"]
}'

Grouping multiple operations in the same requests with the multiget API might intro-
duce a little complexity to your application, but it will make such requests faster with-
out significant costs. The same applies to the multisearch and bulk APIs, and to make
the best use of them, you can experiment with different request sizes and see which
size works best for your documents and your hardware.

 Next, we’ll look at how Elasticsearch processes documents in bulks internally, in
the form of Lucene segments, and how you can tune these processes to speed up
indexing and searching.

10.2 Optimizing the handling of Lucene segments
Once Elasticsearch receives documents from your application, it indexes them in
memory in inverted indices called segments. From time to time, these segments are

The reply
also contains
a docs array.

Each element of
the array is the
document as you
get it with single
GET requests.
Licensed to Thomas Snead <n.ordickan@gmail.com>

302 CHAPTER 10 Improving performance
written to disk. Recall from chapter 3 that these segments can’t be changed—only
deleted—to make it easy for the operating system to cache them. Also, bigger seg-
ments are periodically created from smaller segments to consolidate the inverted indi-
ces and make searches faster.

 There are lots of knobs to influence how Elasticsearch handles these segments at
every step, and configuring them to fit your use case often gives important perfor-
mance gains. In this section, we’ll discuss these knobs and divide them into three
categories:

■ How often to refresh and flush—Refreshing reopens Elasticsearch’s view on the
index, making newly indexed documents available for search. Flushing commits
indexed data from memory to the disk. Both refresh and flush operations are
expensive in terms of performance, so it’s important to configure them cor-
rectly for your use case.

■ Merge policies—Lucene (and by inheritance, Elasticsearch) stores data into
immutable groups of files called segments. As you index more data, more seg-
ments are created. Because a search in many segments is slow, small segments
are merged in the background into bigger segments to keep their number man-
ageable. Merging is performance intensive, especially for the I/O subsystem.
You can adjust the merge policy to influence how often merges happen and
how big segments can get.

■ Store and store throttling—Elasticsearch limits the impact of merges on your sys-
tem’s I/O to a certain number of bytes per second. Depending on your hard-
ware and use case, you can change this limit. There are also other options for
how Elasticsearch uses the storage. For example, you can choose to store your
indices only in memory.

We’ll start with the category that typically gives you the biggest performance gain of
the three: choosing how often to refresh and flush.

10.2.1 Refresh and flush thresholds

Recall from chapter 2 that Elasticsearch is often called near real time; that’s because
searches are often not run on the very latest indexed data (which would be real time)
but close to it.

 This near-real-time label fits because normally Elasticsearch keeps a point-in-time
view of the index opened, so multiple searches would hit the same files and reuse the
same caches. During this time, newly indexed documents won’t be visible to those
searches until you do a refresh.

 Refreshing, as the name suggests, refreshes this point-in-time view of the index so
your searches can hit your newly indexed data. That’s the upside. The downside is that
each refresh comes with a performance penalty: some caches will be invalidated, slow-
ing down searches, and the reopening process itself needs processing power, slowing
down indexing.
Licensed to Thomas Snead <n.ordickan@gmail.com>

303Optimizing the handling of Lucene segments
WHEN TO REFRESH

The default behavior is to refresh every index automatically every second. You can
change the interval for every index by changing its settings, which can be done at run-
time. For example, the following command will set the automatic refresh interval to
5 seconds:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.refresh_interval": "5s"
}'

TIP To confirm that your changes were applied, you can get all the index set-
tings by running curl localhost:9200/get-together/_settings?pretty.

As you increase the value of refresh_interval, you’ll have more indexing through-
put because you’ll spend fewer system resources on refreshing.

 Alternatively, you can set refresh_interval to -1 to effectively disable automatic
refreshes and rely on manual refresh. This works well for use cases where indices
change only periodically in batches, such as for a retail chain where products and
stocks are updated every night. Indexing throughput is important because you want to
consume those updates quickly, but data freshness isn’t, because you don’t get the
updates in real time, anyway. So you can do nightly bulk index/updates with auto-
matic refresh disabled and refresh manually when you’ve finished.

 To refresh manually, hit the _refresh endpoint of the index (or indices) you want
to refresh:

% curl localhost:9200/get-together/_refresh

WHEN TO FLUSH

If you’re used to older versions of Lucene or Solr, you might be inclined to think that
when a refresh happens, all data that was indexed (in memory) since the last refresh is
also committed to disk.

 With Elasticsearch (and Solr 4.0 or later) the process of refreshing and the process
of committing in-memory segments to disk are independent. Indeed, data is indexed
first in memory, but after a refresh, Elasticsearch will happily search the in-memory
segments as well. The process of committing in-memory segments to the actual
Lucene index you have on disk is called a flush, and it happens whether the segments
are searchable or not.

 To make sure that in-memory data isn’t lost when a node goes down or a shard is
relocated, Elasticsearch keeps track of the indexing operations that weren’t flushed
yet in a transaction log. Besides committing in-memory segments to disk, a flush also
clears the transaction log, as shown in figure 10.2.

 A flush is triggered in one of the following conditions, as shown in figure 10.3:

■ The memory buffer is full.
■ A certain amount of time passed since the last flush.
■ The transaction log hit a certain size threshold.
Licensed to Thomas Snead <n.ordickan@gmail.com>

304 CHAPTER 10 Improving performance
To control how often a flush happens, you have to adjust the settings that control
those three conditions.

 The memory buffer size is defined in the elasticsearch.yml configuration file
through the indices.memory.index_buffer_size setting. This controls the overall
buffer for the entire node, and the value can be either a percent of the overall JVM
heap like 10% or a fixed value like 100 MB.

 Transaction log settings are index specific and control both the size at which a
flush is triggered (via index.translog.flush_threshold_size) and the time since

Index buffer

Persistent storage

segment3
segment1 segment2

segment3 segment4

index doc1

update doc2

...

segment4

Transaction log

Figure 10.2 A flush moves segments from memory to disk and clears the
transaction log.

Index buffer

segment3

index doc1

update doc2

...

segment4

Transaction log

Documents

1. Full?

2. Time passed?

3. Full?

Flush

Figure 10.3 A flush is triggered when the memory buffer or transaction log is full or at an interval.
Licensed to Thomas Snead <n.ordickan@gmail.com>

305Optimizing the handling of Lucene segments
the last flush (via index.translog.flush_threshold_period). As with most index
settings, you can change them at runtime:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.translog": {
 "flush_threshold_size": "500mb",
 "flush_threshold_period": "10m"
 }
}'

When a flush is performed, one or more segments are created on the disk. When you
run a query, Elasticsearch (through Lucene) looks in all segments and merges the
results in an overall shard result. Then, as you saw in chapter 2, per-shard results are
aggregated into the overall results that go back to your application.

 The key thing to remember here about segments is that the more segments you
have to search through, the slower the search. To keep the number of segments at bay,
Elasticsearch (again, through Lucene) merges multiple sets of smaller segments into
bigger segments in the background.

10.2.2 Merges and merge policies

We first introduced segments in chapter 3 as immutable sets of files that Elastic-
search uses to store indexed data. Because they don’t change, segments are easily
cached, making searches fast. Also, changes to the dataset, such as the addition of a
document, won’t require rebuilding the index for data stored in existing segments.
This makes indexing new documents fast, too—but it’s not all good news. Updating
a document can’t change the actual document; it can only index a new one. This
requires deleting the old document, too. Deleting, in turn, can’t remove a docu-
ment from its segment (that would require rebuilding the inverted index), so it’s
only marked as deleted in a separate .del file. Documents are only actually removed
during segment merging.

 This brings us to the two purposes of merging segments: to keep the total num-
ber of segments in check (and with it, query performance) and to remove deleted
documents.

 Segment merging happens in the background, according to the defined merge
policy. The default merge policy is tiered, which, as illustrated in figure 10.4, divides
segments into tiers, and if you have more than the set maximum number of segments
in a tier, a merge is triggered in that tier.

 There are other merge policies, but in this chapter we’ll focus only on the tiered
merge policy, which is the default, because it works best for most use cases.

TIP There are some nice videos and explanations of different merge policies
on Mike McCandless’s blog (he’s a co-author of Lucene in Action, Second Edi-
tion [Manning Publications, 2010]): http://blog.mikemccandless.com/2011/
02/visualizing-lucenes-segment-merges.html.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

306 CHAPTER 10 Improving performance
TUNING MERGE POLICY OPTIONS

The overall purpose of merging is to trade I/O and some CPU time for search perfor-
mance. Merging happens when you index, update, or delete documents, so the more
you merge, the more expensive these operations get. Conversely, if you want faster
indexing, you’ll need to merge less and sacrifice some search performance.

 In order to have more or less merging, you have a few configuration options. Here
are the most important ones:

■ index.merge.policy.segments_per_tier—The higher the value, the more
segments you can have in a tier. This will translate to less merging and better
indexing performance. If you have little indexing and you want better search
performance, lower this value.

■ index.merge.policy.max_merge_at_once—This setting limits how many seg-
ments can be merged at once. You’d typically make it equal to the segments_
per_tier value. You could lower the max_merge_at_once value to force less
merging, but it’s better to do that by increasing segments_per_tier. Make sure

Index

Index

Index

Index

Index

max_size

max_size

max_size

max_size

1. Flush operations add segments in the first

tier, until there are too many. Let’s say four

are too many.

2. Small segments are merged into bigger

ones. Flushing continues to add new

small segments.

3. Eventually, there will be four segments

on the bigger tier.

4. The four bigger segments get merged

into an even bigger segment, and the

process continues...

5. ...until a tier hits a set limit. Only smaller

segments get merged; max segments

stay the same.

Figure 10.4 Tiered merge policy performs a merge when it finds too many segments in a tier.
Licensed to Thomas Snead <n.ordickan@gmail.com>

307Optimizing the handling of Lucene segments
max_merge_at_once isn’t higher than segments_per_tier because that will cause
too much merging.

■ index.merge.policy.max_merged_segment—This setting defines the maxi-
mum segment size; bigger segments won’t be merged with other segments.
You’d lower this value if you wanted less merging and faster indexing because
larger segments are more difficult to merge.

■ index.merge.scheduler.max_thread_count—Merging happens in the back-
ground on separate threads, and this setting controls the maximum number of
threads that can be used for merging. This is the hard limit of how many
merges can happen at once. You’d increase this setting for an aggressive merge
policy on a machine with many CPUs and fast I/O, and you’d decrease it if you
had a slow CPU or I/O.

All those options are index-specific, and, as with transaction log and refresh settings,
you can change them at runtime. For example, the following snippet forces more
merging by reducing segments_per_tier to 5 (and with it, max_merge_at_once), low-
ers the maximum segment size to 1 GB, and lowers the thread count to 1 to work bet-
ter with spinning disks:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.merge": {
 "policy": {
 "segments_per_tier": 5,
 "max_merge_at_once": 5,
 "max_merged_segment": "1gb"
 },
 "scheduler.max_thread_count": 1
 }
}'

OPTIMIZING INDICES

As with refreshing and flushing, you can trigger a merge manually. A forced merge
call is also known as optimize, because you’d typically run it on an index that isn’t
going to be changed later to optimize it to a specified (low) number of segments for
faster searching.

 As with any aggressive merge, optimizing is I/O intensive and invalidates lots of
caches. If you continue to index, update, or delete documents from that index, new
segments will be created and the advantages of optimizing will be lost. Thus, if you
want fewer segments on an index that’s constantly changing, you should tune the
merge policy.

 Optimizing makes sense on a static index. For example, if you index social media
data and you have one index per day, you know you’ll never change yesterday’s index
until you remove it for good. It might help to optimize it to a low number of segments,
as shown in figure 10.5, which will reduce its total size and speed up queries once
caches are warmed up again.
Licensed to Thomas Snead <n.ordickan@gmail.com>

308 CHAPTER 10 Improving performance
To optimize, you’d hit the _optimize endpoint of the index or indices you need to
optimize. The max_num_segments option indicates how many segments you should
end up with per shard:

% curl localhost:9200/get-together/_optimize?max_num_segments=1

An optimize call can take a long time on a large index. You can send it to the back-
ground by setting wait_for_merge to false.

 One possible reason for an optimize (or any merge) being slow is that Elastic-
search, by default, limits the amount of I/O throughput merge operations can use.
This limiting is called store throttling, and we’ll discuss it next, along with other options
for storing your data.

10.2.3 Store and store throttling

In early versions of Elasticsearch, heavy merging could slow down the cluster so much
that indexing and search requests would take unacceptably long, or nodes could
become unresponsive altogether. This was all due to the pressure of merging on the I/O
throughput, which would make the writing of new segments slow. Also, CPU load was
higher due to I/O wait.

 As a result, Elasticsearch now limits the amount of I/O throughput that merges
can use through store throttling. By default, there’s a node-level setting called
indices.store.throttle.max_bytes_per_sec, which defaults to 20mb as of ver-
sion 1.5.

 This limit is good for stability in most use cases but won’t work well for every-
one. If you have fast machines and lots of indexing, merges won’t keep up, even if
there’s enough CPU and I/O to perform them. In such situations, Elasticsearch
makes internal indexing work only on one thread, slowing it down to allow merges
to keep up. In the end, if your machines are fast, indexing might be limited by
store throttling. For nodes with SSDs, you’d normally increase the throttling limit
to 100–200 MB.

Static indices: optimized to one

segment for compact size and faster searches

(once caches are warmed up again).

Active (today’s) index:

gets updated, merges work

according to merge policy.

2014-09-13 2014-09-14 2014-09-15

Figure 10.5 Optimizing makes sense for indices that don’t get updates.
Licensed to Thomas Snead <n.ordickan@gmail.com>

309Optimizing the handling of Lucene segments
CHANGING STORE THROTTLING LIMITS

If you have fast disks and need more I/O throughput for merging, you can raise the
store throttling limit. You can also remove the limit altogether by setting indices
.store.throttle.type to none. On the other end of the spectrum, you can apply the
store throttling limit to all of Elasticsearch’s disk operations, not just merge, by setting
indices.store.throttle.type to all.

 Those settings can be changed from elasticsearch.yml on every node, but they can
also be changed at runtime through the Cluster Update Settings API. Normally, you’d
tune them while monitoring how much merging and other disk activities are actually
happening—we’ll show you how to do that in chapter 11.

TIP Elasticsearch 2.0, which will be based on Lucene 5.0, will use Lucene’s
auto-io-throttle feature,1 which will automatically throttle merges based on
how much indexing is going on. If there’s little indexing, merges will be
throttled more so they won’t affect searches. If there’s lots of indexing, there
will be less merge throttling, so that merges won’t fall behind.

The following command would raise the throttling limit to 500 MB/s but apply it to all
operations. It would also make the change persistent to survive full cluster restarts
(which is opposed to transient settings that are lost when the cluster is restarted):

% curl -XPUT localhost:9200/_cluster/settings -d '{
 "persistent": {
 "indices.store.throttle": {
 "type": "all",
 "max_bytes_per_sec": "500mb"
 }
 }
}'

TIP As with index settings, you can also get cluster settings to see if they’re
applied. You’d do that by running curl localhost:9200/_cluster/set-
tings?pretty.

CONFIGURING STORE

When we talked about flushes, merges, and store throttling, we said “disk” and “I/O”
because that’s the default: Elasticsearch will store indices in the data directory, which
defaults to /var/lib/elasticsearch/data if you installed Elasticsearch from a RPM/DEB
package, or the data/ directory from the unpacked tar.gz or ZIP archive if you
installed it manually. You can change the data directory from the path.data property
of elasticsearch.yml.

1 For more details, check the Lucene issue, https://issues.apache.org/jira/browse/LUCENE-6119, and the
Elasticsearch issue, https://github.com/elastic/elasticsearch/pull/9243.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://issues.apache.org/jira/browse/LUCENE-6119
https://github.com/elastic/elasticsearch/pull/9243

310 CHAPTER 10 Improving performance
TIP You can specify multiple directories in path.data which—in version 1.5,
at least—will put different files in different directories to achieve striping
(assuming those directories are on different disks). If that’s what you’re after,
you’re often better off using RAID0, in terms of both performance and reli-
ability. For this reason, the plan is to put each shard in the same directory
instead of striping it.2

The default store implementation stores index files in the file system, and it works well
for most use cases. To access Lucene segment files, the default store implementation
uses Lucene’s MMapDirectory for files that are typically large or need to be randomly
accessed, such as term dictionaries. For the other types of files, such as stored fields,
Elasticsearch uses Lucene’s NIOFSDirectory.

MMAPDIRECTORY

MMapDirectory takes advantage of file system caches by asking the operating system to
map the needed files in virtual memory in order to access that memory directly. To
Elasticsearch, it looks as if all the files are available in memory, but that doesn’t have to
be the case. If your index size is larger than your available physical memory, the oper-
ating system will happily take unused files out of the caches to make room for new
ones that need to be read. If Elasticsearch needs those uncached files again, they’ll be
loaded in memory while other unused files are taken out and so on. The virtual mem-
ory used by MMapDirectory works similarly to the system’s virtual memory (swap),
where the operating system uses the disk to page out unused memory in order to be
able to serve multiple applications.

NIOFSDIRECTORY

Memory-mapped files also imply an overhead because the application has to tell the
operating system to map a file before accessing it. To reduce this overhead, Elastic-
search uses NIOFSDirectory for some types of files. NIOFSDirectory accesses files
directly, but it has to copy the data it needs to read in a buffer in the JVM heap. This
makes it good for small, sequentially accessed files, whereas MMapDirectory works well
for large, randomly accessed files.

 The default store implementation is best for most use cases. You can, however,
choose other implementations by changing index.store.type in the index settings
to values other than default:

■ mmapfs—This will use the MMapDirectory alone and will work well, for example,
if you have a relatively static index that fits in your physical memory.

■ niofs—This will use NIOFSDirectory alone and would work well on 32-bit sys-
tems, where virtual memory address space is limited to 4 GB, which will prevent
you from using mmapfs or default for larger indices.

2 More details can be found on Elasticsearch’s bug tracker: https://github.com/elastic/elasticsearch/issues/
9498.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/9498
https://github.com/elastic/elasticsearch/issues/9498

311Optimizing the handling of Lucene segments
Store type settings need to be configured when you create the index. For example, the
following command creates an mmap-ed index called unit-test:

% curl -XPUT localhost:9200/unit-test -d '{
 "index.store.type": "mmapfs"
}'

If you want to apply the same store type for all newly created indices, you can set
index.store.type to mmapfs in elasticsearch.yml. In chapter 11 we’ll introduce index
templates, which allow you to define index settings that would apply to new indices
matching specific patterns. Templates can also be changed at runtime, and we recom-
mend using them instead of the more static elasticsearch.yml equivalent if you often
create new indices.

The default store type is typically the fastest because of the way the operating system
caches files. For caching to work well, you need to have enough free memory.

TIP From Elasticsearch 2.0 on, you’ll be able to compress stored fields (and
_source) further by setting index.codec to best_compression.3 The default
(named default, as with store types) still compresses stored fields by using

Open files and virtual memory limits
Lucene segments that are stored on disk can spread onto many files, and when a
search runs, the operating system needs to be able to open many of them. Also,
when you’re using the default store type or mmapfs, the operating system has to map
some of those stored files into memory—even though these files aren’t in memory,
to the application it’s like they are, and the kernel takes care of loading and unloading
them in the cache. Linux has configurable limits that prevent the applications from
opening too many files at once and from mapping too much memory. These limits are
typically more conservative than needed for Elasticsearch deployments, so it’s rec-
ommended to increase them. If you’re installing Elasticsearch from a DEB or RPM
package, you don’t have to worry about this because they’re increased by default.
You can find these variables in /etc/default/elasticsearch or /etc/sysconfig/elastic-
search:

MAX_OPEN_FILES=65535

MAX_MAP_COUNT=262144

To increase those limits manually, you have to run ulimit -n 65535 as the user who
starts Elasticsearch for the open files and run sysctl -w vm.max_map_count
=262144 as root for the virtual memory.

3 For more details, check the Elasticsearch issue, https://github.com/elastic/elasticsearch/pull/8863, and the
main Lucene issue, https://issues.apache.org/jira/browse/LUCENE-5914.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/pull/8863
https://issues.apache.org/jira/browse/LUCENE-5914

312 CHAPTER 10 Improving performance
LZ4, but best_compression uses deflate.4 Higher compression will slow down
operations that need _source, like fetching results or highlighting. Other
operations, such as aggregations, should be at least equally fast because the
overall index will be smaller and easier to cache.

We mentioned how merge and optimize operations invalidate caches. Managing
caches for Elasticsearch to perform well deserves more explanation, so we’ll discuss
that next.

10.3 Making the best use of caches
One of Elasticsearch’s strong points—if not the strongest point—is the fact that
you can query billions of documents in milliseconds with commodity hardware.
And one of the reasons this is possible is its smart caching. You might have noticed
that after indexing lots of data, the second query can be orders of magnitude
faster than the first one. It’s because of caching—for example, when you combine
filters and queries—that the filter cache plays an important role in keeping your
searches fast.

 In this section we’ll discuss the filter cache and two other types of caches: the shard
query cache, useful when you run aggregations on static indices because it caches the
overall result, and the operating system caches, which keep your I/O throughput high
by caching indices in memory.

 Finally, we’ll show you how to keep all those caches warm by running queries at
each refresh with index warmers. Let’s start by looking at the main type of Elastic-
search-specific cache—the filter cache—and how you can run your searches to make
the best use of it.

10.3.1 Filters and filter caches

In chapter 4 you saw that lots of queries have a filter equivalent. Let’s say that you want
to look for events on the get-together site that happened in the last month. To do that,
you could use the range query or the equivalent range filter.

 In chapter 4 we said that of the two, we recommend using the filter, because it’s
cacheable. The range filter is cached by default, but you can control whether a filter is
cached or not through the _cache flag.

TIP Elasticsearch 2.0 will cache, by default, only frequently used filters and
only on bigger segments (that were merged at least once). This should pre-
vent caching too aggressively but should also catch frequent filters and opti-
mize them. More implementation details can be found in the Elasticsearch5

and Lucene6 issues about filter caching. This flag applies to all filters; for

4 https://en.wikipedia.org/wiki/DEFLATE
5 https://github.com/elastic/elasticsearch/pull/8573
6 https://issues.apache.org/jira/browse/LUCENE-6077
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/pull/8573
https://en.wikipedia.org/wiki/DEFLATE
https://github.com/elastic/elasticsearch/pull/8573
https://issues.apache.org/jira/browse/LUCENE-6077

313Making the best use of caches
example, the following snippet will filter events with "elasticsearch" in the
verbatim tag but won’t cache the results:

% curl localhost:9200/get-together/group/_search?pretty -d '{
 "query": {
 "filtered": {
 "filter": {
 "term": {
 "tags.verbatim": "elasticsearch",
 "_cache": false
 }
 }
 }
 }
}'

NOTE Although all filters have the _cache flag, it doesn’t apply in 100% of
cases. For the range filter, if you use "now" as one of the boundaries, the flag
is ignored. For the has_child or has_parent filters, the _cache flag doesn’t
apply at all.

FILTER CACHE

The results of a filter that’s cached are stored in the filter cache. This cache is allo-
cated at the node level, like the index buffer size you saw earlier. It defaults to 10%,
but you can change it from elasticsearch.yml according to your needs. If you use filters
a lot and cache them, it might make sense to increase the size. For example:

indices.cache.filter.size: 30%

How do you know if you need more (or less) filter cache? By monitoring your actual
usage. As we’ll explore in chapter 11 on administration, Elasticsearch exposes lots
of metrics, including the amount of filter cache that’s actually used and the number of
cache evictions. An eviction happens when the cache gets full and Elasticsearch
drops the least recently used (LRU) entry in order to make room for the new one.

 In some use cases, filter cache entries have a short lifespan. For example, users typi-
cally filter get-together events by a particular subject, refine their queries until they find
what they want, and then leave. If nobody else is searching for events on the same sub-
ject, that cache entry will stick around doing nothing until it eventually gets evicted. A
full cache with many evictions would make performance suffer because every search will
consume CPU cycles to squeeze new cache entries by evicting old ones.

 In such use cases, to prevent evictions from happening exactly when queries are
run, it makes sense to set a time to live (TTL) on cache entries. You can do that on a
per-index basis by adjusting index.cache.filter.expire. For example, the following
snippet will expire filter caches after 30 minutes:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.cache.filter.expire": "30m"
}'
Licensed to Thomas Snead <n.ordickan@gmail.com>

314 CHAPTER 10 Improving performance
Besides making sure you have enough room in your filter caches, you need to run
your filters in a way that takes advantage of these caches.

COMBINING FILTERS

You often need to combine filters—for example, when you’re searching for events in a
certain time range, but also with a certain number of attendees. For best perfor-
mance, you’ll need to make sure that caches are well used when filters are combined
and that filters run in the right order.

 To understand how to best combine filters, we need to revisit a concept discussed
in chapter 4: bitsets. A bitset is a compact array of bits, and it’s used by Elasticsearch to
cache whether a document matches a filter or not. Most filters (such as the range and
terms filter) use bitsets for caching. Other filters, such as the script filter, don’t use
bitsets because Elasticsearch has to iterate through all documents anyway. Table 10.1
shows which of the important filters use bitsets and which don’t.

For filters that don’t use bitsets, you can still set _cache to true in order to cache
results of that exact filter. Bitsets are different than simply caching the results because
they have the following characteristics:

■ They’re compact and easy to create, so the overhead of creating the cache when
the filter is first run is insignificant.

■ They’re stored per individual filter; for example, if you use a term filter in two
different queries or within two different bool filters, the bitset of that term can
be reused.

■ They’re easy to combine with other bitsets. If you have two queries that use bit-
sets, it’s easy for Elasticsearch to do a bitwise AND or OR in order to figure out
which documents match the combination.

To take advantage of bitsets, you need to combine filters that use them in a bool filter
that will do that bitwise AND or OR, which is easy for your CPU. For example, if you want

Table 10.1 Which filters use bitsets

Filter type Uses bitset

term Yes

terms Yes, but you can configure it differently, as we’ll explain in a bit

exists/missing Yes

prefix Yes

regexp No

nested/has_parent/has_child No

script No

geo filters (see appendix A) No
Licensed to Thomas Snead <n.ordickan@gmail.com>

315Making the best use of caches
to show only groups where either Lee is a member or that contain the tag elastic-
search, it could look like this:

 "filter": {
 "bool": {
 "should": [
 {
 "term": {
 "tags.verbatim": "elasticsearch"
 }
 },
 {
 "term": {
 "members": "lee"
 }
 }
]
 }
 }

The alternative to combining filters is using the and, or, and not filters. These filters
work differently because unlike the bool filter, they don’t use bitwise AND or OR. They
run the first filter, pass the matching documents to the next one, and so on. As a
result, and, or, and not filters are better when it comes to combining filters that don’t
use bitsets. For example, if you want to show groups having at least three members,
with events organized in July 2013, the filter might look like this:

 "filter": {
 "and": [
 {
 "has_child": {
 "type": "event",
 "filter": {
 "range": {
 "date": {
 "from": "2013-07-01T00:00",
 "to": "2013-08-01T00:00"
 }
 }
 }
 }
 },
 {
 "script": {
 "script": "doc['members'].values.length > minMembers",
 "params": {
 "minMembers": 2
 }
 }
 }
]
 }
Licensed to Thomas Snead <n.ordickan@gmail.com>

316 CHAPTER 10 Improving performance
If you’re using both bitset and nonbitset filters, you can combine the bitset ones in a
bool filter and put that bool filter in an and/or/not filter, along with the nonbitset fil-
ters. For example, in the next listing you’ll look for groups with at least two members
where either Lee is one of them or the group is about Elasticsearch.

curl localhost:9200/get-together/group/_search?pretty -d'{
 "query": {
 "filtered": {
 "filter": {
 "and": [
 {
 "bool": {
 "should": [
 {
 "term": {
 "tags.verbatim": "elasticsearch"
 }
 },
 {
 "term": {
 "members": "lee"
 }
 }
]
 }
 },
 {
 "script": {
 "script": "doc[\"members\"].values.length > minMembers",
 "params": {
 "minMembers": 2
 }
 }
 }
]
 }
 }
 }
}'

Whether you combine filter with the bool, and, or, or not filters, the order in which
those filters are executed is important. Cheaper filters, such as the term filter, should
be placed before expensive filters, such as the script filter. This would make the
expensive filter run on a smaller set of documents—those that already matched previ-
ous filters.

RUNNING FILTERS ON FIELD DATA

So far, we’ve discussed how bitsets and cached results make your filters faster. Some fil-
ters use bitsets; some can cache the overall results. Some filters can also run on field
data. We first discussed field data in chapter 6 as an in-memory structure that keeps a

Listing 10.6 Combine bitset filters in a bool filter inside an and/or/not filter

Filtered query means if you add a
query here, it will run only on
documents matching the filter.

The AND
filter will

run the
bool filter

first.

bool is fast when cached
because it makes use of the
two bitsets of the term filters.

The script filter will
work only on documents
matching the bool filter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

317Making the best use of caches
mapping of documents to terms. This mapping is the opposite of the inverted index,
which maps terms to documents. Field data is typically used when sorting and during
aggregations, but some filters can use it, too: the terms and the range filters.

NOTE An alternative to the in-memory field data is to use doc values, which
are calculated at index time and stored on disk with the rest of your index. As
we pointed out in chapter 6, doc values work for numeric and not-analyzed
string fields. In Elasticsearch 2.0, doc values will be used by default for those
fields because holding field data in the JVM heap is usually not worth the per-
formance increase.

A terms filter can have lots of terms, and a range filter with a wide range will (under
the hood) match lots of numbers (and numbers are also terms). Normal execution of
those filters will try to match every term separately and return the set of unique docu-
ments, as illustrated in figure 10.6.

As you can imagine, filtering on many terms could get expensive because there would
be many lists to intersect. When the number of terms is large, it can be faster to take
the actual field values one by one and see if the terms match instead of looking in the
index, as illustrated in figure 10.7.

These field values would be loaded in the field data cache by setting execution to
fielddata in the terms or range filters. For example, the following range filter will
get events that happened in 2013 and will be executed on field data:

 "filter": {
 "range": {
 "date": {

apples

oranges

pears

bananas

1,4

3

2,3

2,4

[1,4] + [2,4] = [1,2,4]

Filter: [apples, bananas]

Figure 10.6 By default, the
terms filter is checking which
documents match each term,
and it intersects the lists.

apples

pears, bananas

pears, oranges

apples, bananas

1

2

3

4

[1,2,4]

Filter: [apples, bananas]

Figure 10.7 Field data execution
means iterating through documents
but no list intersections.
Licensed to Thomas Snead <n.ordickan@gmail.com>

318 CHAPTER 10 Improving performance
 "gte": "2013-01-01T00:00",
 "lt": "2014-01-01T00:00"
 },
 "execution": "fielddata"
 }
 }

Using field data execution is especially useful when the field data is already used by a
sort operation or an aggregation. For example, running a terms aggregation on the
tags field will make a subsequent terms filter for a set of tags faster because the field
data is already loaded.

To sum up, you have three options for running your filters:

■ Caching them in the filter cache, which is great when filters are reused
■ Not caching them if they aren’t reused
■ Running terms and range filters on field data, which is good when you have

many terms, especially if the field data for that field is already loaded

Next, we’ll look at the shard query cache, which is good for when you reuse entire
search requests over static data.

10.3.2 Shard query cache

The filter cache is purpose-built to make parts of a search—namely filters that are con-
figured to be cached—run faster. It’s also segment-specific: if some segments get
removed by the merge process, other segments’ caches remain intact. By contrast, the
shard query cache maintains a mapping between the whole request and its results on
the shard level, as illustrated in figure 10.8. If a shard has already answered an identi-
cal request, it can serve it from the cache.

 As of version 1.4, results cached at the shard level are limited to the total number
of hits (not the hits themselves), aggregations, and suggestions. That’s why (in ver-
sion 1.5, at least) shard query cache works only when your query has search_type
set to count.

Other execution modes for the terms filter: bool and and/or
The terms filter has other execution modes, too. If the default execution mode (called
plain) builds a bitset to cache the overall result, you can set it to bool in order to
have a bitset for each term instead. This is useful when you have different terms fil-
ters, which have lots of terms in common.

Also, there are and/or execution modes that perform a similar process, except the
individual term filters are wrapped in an and/or filter instead of a bool filter.

Usually, the and/or approach is slower than bool because it doesn’t take advantage
of bitsets. and/or might be faster if the first term filters match only a few docu-
ments, which makes subsequent filters extremely fast.
Licensed to Thomas Snead <n.ordickan@gmail.com>

319Making the best use of caches
NOTE By setting search_type to count in the URI parameters, you tell Elas-
ticsearch that you’re not interested in the query results, only in their number.
We’ll look at count and other search types later in this section. In Elastic-
search 2.0, setting size to 0 will also work and search_type=count will be
deprecated.7

7 https://github.com/elastic/elasticsearch/pull/9296

Search request

Filter: tag=elasticsearch

Aggregate result with other shards

Return reply

In shard

query cache?

Yes

Yes

In filter

cache?

No: run filter

on segments

No: run filter

on docs

doc

Shard

Segment

Node

Figure 10.8 The shard query cache is more high-level than the filter cache.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/pull/9296

320 CHAPTER 10 Improving performance
The shard query cache entries differ from one request to another, so they apply only
to a narrow set of requests. If you’re searching for a different term or running a
slightly different aggregation, it will be a cache miss. Also, when a refresh occurs and
the shard’s contents change, all shard query cache entries are invalidated. Otherwise,
new matching documents could have been added to the index, and you’d get out-
dated results from the cache.

 This narrowness of cache entries makes the shard query cache valuable only when
shards rarely change and you have many identical requests. For example, if you’re
indexing logs and have time-based indices, you may often run aggregations on older
indices that typically remain unchanged until they’re deleted. These older indices are
ideal candidates for a shard query cache.

 To enable the shard query cache by default on the index level, you can use the
indices update settings API:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.cache.query.enable": true
}'

TIP As with all index settings, you can enable the shard query cache at index
creation, but it makes sense to do that only if your new index gets queried a
lot and updated rarely.

For every query, you can also enable or disable the shard query cache, overriding the
index-level setting, by adding the query_cache parameter. For example, to cache
the frequent top_tags aggregation on our get-together index, even if the default is
disabled, you can run it like this:

% URL="localhost:9200/get-together/group/_search"
% curl "$URL?search_type=count&query_cache&pretty" -d '{
 "aggs": {
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 }
 }
 }
}'

Like the filter cache, the shard query cache has a size configuration parameter. The
limit can be changed at the node level by adjusting indices.cache.query.size from
elasticsearch.yml, from the default of 1% of the JVM heap.

 When sizing the JVM heap itself, you need to make sure you have enough room for
both the filter and the shard query caches. If memory (especially the JVM heap) is lim-
ited, you should lower cache sizes to make more room for memory that’s used anyway
by index and search requests in order to avoid out-of-memory exceptions.

 Also, you need to have enough free RAM besides the JVM heap to allow the operat-
ing system to cache indices stored on disk; otherwise you’ll have a lot of disk seeks.
Licensed to Thomas Snead <n.ordickan@gmail.com>

321Making the best use of caches
 Next we’ll look at how you can balance the JVM heap with the OS caches and why
that matters.

10.3.3 JVM heap and OS caches

If Elasticsearch doesn’t have enough heap to finish an operation, it throws an out-of-
memory exception that effectively makes the node crash and fall out of the cluster.
This puts an extra load on other nodes as they replicate and relocate shards in order
to get back to the configured state. Because nodes are typically equal, this extra load is
likely to make at least another node run out of memory. Such a domino effect can
bring down your entire cluster.

 When the JVM heap is tight, even if you don’t see an out-of-memory error in the
logs, the node may become just as unresponsive. This can happen because the lack of
memory pressures the garbage collector (GC) to run longer and more often in order
to free memory. As the GC takes more CPU time, there’s less computing power on the
node for serving requests or even answering pings from the master, causing the node
to fall out of the cluster.

Too much GC? Let’s search the web for some GC tuning tips!
When GC is taking a lot of CPU time, the engineer in us is tempted to find that magic
JVM setting that will cure everything. More often than not, it’s the wrong place to
search for a solution because heavy GC is just a symptom of Elasticsearch needing
more heap than it has.

Although increasing the heap size is an obvious solution, it’s not always possible.
The same applies to adding more data nodes. Instead, you can look at a number of
tricks to reduce your heap usage:

■ Reduce the index buffer size that we discussed in section 10.2.
■ Reduce the filter cache and/or shard query cache.
■ Reduce the size value of searches and aggregations (for aggregations, you also

have to take care of shard_size).
■ If you have to make do with large sizes, you can add some non-data and non-

master nodes to act as clients. They’ll take the hit of aggregating per-shard
results of searches and aggregations.

Finally, Elasticsearch uses another cache type to work around the way Java does gar-
bage collection. There’s a young generation space where new objects are allocated.
They’re “promoted” to old generation if they’re needed for long enough or if lots of
new objects are allocated and the young space fills up. This last problem appears
especially with aggregations, which have to iterate through large sets of documents
and create lots of objects that might be reused with the next aggregation.

Normally you want these potentially reusable objects used by aggregations to be pro-
moted to the old generation instead of some random temporary objects that just hap-
pen to be there when the young generation fills up. To achieve this, Elasticsearch
Licensed to Thomas Snead <n.ordickan@gmail.com>

322 CHAPTER 10 Improving performance
CAN YOU HAVE TOO LARGE OF A HEAP?
It might have been obvious that a heap that’s too small is bad, but having a heap that’s
too large isn’t great either. A heap size of more than 32 GB will automatically make
pointers uncompressed and waste memory. How much wasted memory? It depends
on the use case: it can vary from as little as 1 GB for 32 GB if you’re doing mostly aggre-
gations (which use big arrays that have few pointers) to something like 10 GB if you’re
using filter caches a lot (which have many small entries with many pointers). If you
really need more than 32 GB of heap, you’re sometimes better off running two or
more nodes on the same machine, each with less than 32 GB of heap, and dividing the
data between them through sharding.8 9 10

NOTE If you end up with multiple Elasticsearch nodes on the same physical
machine, you need to make sure that two replicas of the same shard aren’t
allocated on the same physical machine under different Elasticsearch nodes.
Otherwise, if a physical machine goes down, you’ll lose two copies of that shard.
To prevent this, you can use shard allocation, as described in chapter 11.

(continued)

implements a PageCacheRecycler8 where big arrays used by aggregations are kept
from being garbage collected. This default page cache is 10% of the total heap, and
in some cases it might be too much (for example, you have 30 GB of heap, making
the cache a healthy 3 GB). You can control the size of this cache from elastic-
search.yml via cache.recycler.page.limit.heap.

Still, there are times when you’d need to tune your JVM settings (although the
defaults are very good), such as when you have almost enough memory but the clus-
ter has trouble when some rare but long GC pauses kick in. You have some options
to make GC kick in more often but stop the world less, effectively trading overall
throughput for better latency:

■ Increase the survivor space (lower -XX:SurvivorRatio) or the whole young gener-
ation (lower -XX:NewRatio) compared to the overall heap. You can check if this
is needed by monitoring different generations.9 More space should give more
time for the young GC to clean up short-lived objects before they get promoted
to the old generation, where a GC will stop the world for longer. But making these
spaces too large will make the young GC work too hard and become inefficient,
because longer-living objects have to be copied between the two survivor spaces

■ Use the G1 GC (-XX:+UseG1GC), which will dynamically allocate space for differ-
ent generations and is optimized for large-memory, low-latency use cases. It’s
not used as the default as of version 1.5 because there are still some bugs show-
ing up10 on 32-bit machines, so make sure you test it thoroughly before using
G1 in production.

8 https://github.com/elastic/elasticsearch/issues/4557
9 Sematext’s SPM can do that for you, as described in appendix D.
10 https://wiki.apache.org/lucene-java/JavaBugs
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/4557
https://wiki.apache.org/lucene-java/JavaBugs

323Making the best use of caches
Below 32 GB too much heap still isn’t ideal (actually, at exactly 32 GB you already lose
compressed pointers, so it’s best to stick with 31 GB as a maximum). The RAM on your
servers that isn’t occupied by the JVM is typically used by the operating system to cache
indices that are stored on the disk. This is especially important if you have magnetic or
network storage because fetching data from the disk while running a query will delay
its response. Even with fast SSDs, you’ll get the best performance if the amount of data
you need to store on a node can fit in its OS caches.

 So far we’ve seen that a heap that’s too small is bad because of GC and out-of-
memory issues, and one that’s too big is bad, too, because it diminishes OS caches.
What’s a good heap size, then?

IDEAL HEAP SIZE: FOLLOW THE HALF RULE

Without knowing anything about the actual heap usage for your use case, the rule of
thumb is to allocate half of the node’s RAM to Elasticsearch, but no more than 32 GB.
This “half” rule often gives a good balance between heap size and OS caches.

 If you can monitor the actual heap usage (and we’ll show you how to do that in
chapter 11), a good heap size is just large enough to accommodate the regular usage
plus any spikes you might expect. Memory usage spikes could happen—for example,
if someone decides to run a terms aggregation with size 0 on an analyzed field with
many unique terms. This will force Elasticsearch to load all terms in memory in order
to count them. If you don’t know what spikes to expect, the rule of thumb is again
half: set a heap size 50% higher than your regular usage.

 For OS caches, you depend mostly on the RAM of your servers. That being said, you
can design your indices in a way that works best with your operating system’s caching.
For example, if you’re indexing application logs, you can expect that most indexing
and searching will involve recent data. With time-based indices, the latest index is
more likely to fit in the OS cache than the whole dataset, making most operations
faster. Searches on older data will often have to hit the disk, but users are more likely
to expect and tolerate slow response times on these rare searches that span longer
periods of time. In general, if you can put “hot” data in the same set of indices or
shards by using time-based indices, user-based indices, or routing, you’ll make better
use of OS caches.

 All the caches we discussed so far—filter caches, shard query caches, and OS
caches—are typically built when a query first runs. Loading up the caches makes that
first query slower, and the slowdown increases with the amount of data and the com-
plexity of the query. If that slowdown becomes a problem, you can warm up the caches
in advance by using index warmers, as you’ll see next.

10.3.4 Keeping caches up with warmers

A warmer allows you to define any kind of search request: it can contain queries, filters,
sort criteria, and aggregations. Once it’s defined, the warmer will make Elasticsearch
run the query with every refresh operation. This will slow down the refresh, but the
user queries will always run on “warm” caches.
Licensed to Thomas Snead <n.ordickan@gmail.com>

324 CHAPTER 10 Improving performance
 Warmers are useful when first-time queries are too slow and it’s preferable for the
refresh operation to take that hit rather than the user. If our get-together site example
had millions of events and consistent search performance was important, warmers
would be useful. Slower refreshes shouldn’t concern you too much, because you
expect groups and events to be searched for more often than they’re modified.

 To define a warmer on an existing index, you’d issue a PUT request to the index’s
URI, with _warmer as the type and the chosen warmer name as an ID, as shown in list-
ing 10.7. You can have as many warmers as you want, but keep in mind that the more
warmers you have, the slower your refreshes will be. Typically, you’d use a few popular
queries as your warmers. For example, in the following listing, you’ll put two warmers:
one for upcoming events and one for popular group tags.

curl -XPUT 'localhost:9200/get-together/event/_warmer/upcoming_events' -d '{
 "sort": [{
 "date": { "order": "desc" }
 }]
}'
{"acknowledged": true}
curl -XPUT 'localhost:9200/get-together/group/_warmer/top_tags' -d '{
 "aggs": {
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 }
 }
 }
}'
{"acknowledged": true}

Later on, you can get the list of warmers for an index by doing a GET request on the
_warmer type:

curl localhost:9200/get-together/_warmer?pretty

You can also delete warmers by sending a DELETE request to the warmer’s URI:

curl -XDELETE localhost:9200/get-together/_warmer/top_tags

If you’re using multiple indices, it makes sense to register warmers at index creation.
To do that, define them under the warmers key in the same way you do with mappings
and settings, as shown in the following listing.

curl -XPUT 'localhost:9200/hot_index' -d '{
"warmers": {
 "date_sorting": {

Listing 10.7 Two warmers for upcoming events and popular group tags

Listing 10.8 Register warmer at index creation time

Name of this warmer. You
can register multiple
warmers, too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

325Other performance tradeoffs
 "types": [],
 "source": {
 "sort": [{
 "date": {
 "order": "desc"
 }
 }]
 }
 }
}}'

TIP If new indices are created automatically, which might occur if you’re
using time-based indices, you can define warmers in an index template that
will be applied automatically to newly created indices. We’ll talk more about
index templates in chapter 11, which is all about how to administer your Elas-
ticsearch cluster.

So far we’ve talked about general solutions: how to keep caches warm and efficient to
make your searches fast, how to group requests to reduce network latency, and how to
configure segment refreshing, flushing, and storing in order to make your indexing
and searching fast. All of this also should reduce the load on your cluster.

 Next we’ll talk about narrower best practices that apply to specific use cases, such
making your scripts fast or doing deep paging efficiently.

10.4 Other performance tradeoffs
In previous sections, you might have noticed that to make an operation fast, you need
to pay with something. For example, if you make indexing faster by refreshing less
often, you pay with searches that may not “see” recently indexed data. In this section
we’ll continue looking at such tradeoffs, especially those that occur in more specific
use cases, by answering questions on the following topics:

■ Inexact matches—Should you get faster searches by using ngrams and shingles at
index time? Or is it better to use fuzzy and wildcard queries?

■ Scripts—Should you trade some flexibility by calculating as much as possible at
index time? If not, how can you squeeze more performance out of them?

■ Distributed search—Should you trade some network round-trips for more accu-
rate scoring?

■ Deep paging—Is it worth trading memory to get page 100 faster?

By the time this chapter ends, we’ll have answered all these questions and lots of oth-
ers that will come up along the way. Let’s start with inexact matches.

Which types this
warmer should
run on. Empty
means all types.

This
warmer
sorts by

date.

Under this key define
the warmer itself.
Licensed to Thomas Snead <n.ordickan@gmail.com>

326 CHAPTER 10 Improving performance
10.4.1 Big indices or expensive searches

Recall from chapter 4 that to get inexact matches—for example, to tolerate typos—
you can use a number of queries:

■ Fuzzy query—This query matches terms at a certain edit distance from the
original. For example, omitting or adding an extra character would make a
distance of 1.

■ Prefix query or filter—These match terms starting with the sequence you provide.
■ Wildcards—These allow you to use ? and * to substitute one or many characters.

For example, "e*search" would match “elasticsearch.”

These queries offer lots of flexibility, but they’re also more expensive than simple que-
ries, such as term queries. For an exact match, Elasticsearch has to find only one term
in the term dictionary, whereas fuzzy, prefix, and wildcard queries have to find all
terms matching the given pattern.

 There’s also another solution for tolerating typos and other inexact matches:
ngrams. Recall from chapter 5 that ngrams generate tokens from each part of the
word. If you use them at both index and query time, you’ll get similar functionality to
a fuzzy query, as you can see in figure 10.9.

Denver

Document

source

denver

Indexed

term

Matching term
denvre

Term to

search for

Denvre

Fuzzy query

string

Analyzer:

lowercase

Analyzer:

lowercase

denvre

Denver

Document

source

den

env

nve

ver

Indexed

terms

den

env

nvr

vre

Term to

search for

Matching terms
Denvre

Query string

More matching terms

increase the score.

More edits

decrease the score.

Analyzer:

lowercase,

ngram size=3

Analyzer:

lowercase,

ngram size=3

den
env

Figure 10.9 Ngrams generate more terms than you need with fuzzy queries, but they match exactly.
Licensed to Thomas Snead <n.ordickan@gmail.com>

327Other performance tradeoffs
Which approach is best for performance? As with everything in this chapter, there’s a
tradeoff, and you need to choose where you want to pay the price:

■ Fuzzy queries slow down your searches, but your index is the same as with
exact matches.

■ Ngrams, on the other hand, increase the size of your index. Depending on
ngram and term sizes, the index size with ngrams can increase a few times. Also,
if you want to change ngram settings, you have to re-index all data, so there’s
less flexibility, but searches are typically faster overall with ngrams.

The ngram method is typically better when query latency is important or when you
have lots of concurrent queries to support, so you need each one to take less CPU.
Ngrams cause indices to be bigger, but they need to still fit in OS caches or you need
fast disks—otherwise performance will degrade because your index is too big.

 The fuzzy approach, on the other hand, is better when you need indexing
throughput, where index size is an issue, or you have slow disks. Fuzzy queries also
help if you need to change them often, such as by adjusting the edit distance, because
you can make those changes without re-indexing all data.

PREFIX QUERIES AND EDGE NGRAMS

For inexact matches, you often assume that the beginning is right. For example, a
search for “elastic” might be looking for “elasticsearch.” Like fuzzy queries, prefix que-
ries are more expensive than regular term queries because there are more terms to
look through.

 The alternative could be to use edge ngrams, which were introduced in chapter 5.
Figure 10.10 shows edge ngrams and prefix queries side by side.

Denver

Document

source

denver

Indexed

term

Matching term

because it begins

with “denv”

denv

Term to

search for

Denv

Prefix query

string

Analyzer:

lowercase

Analyzer:

lowercase

Denver

Document

source

den

denv

denve

Indexed

terms

den

denv

Term to

search for

Matching terms
Denv

Query string

Analyzer:

lowercase,

edge ngram

size=3−5

Analyzer:

lowercase,

edge ngram

size=3−5

den
denv

Figure 10.10 A prefix query has to match more terms but works with a smaller index than edge ngrams.
Licensed to Thomas Snead <n.ordickan@gmail.com>

328 CHAPTER 10 Improving performance
As with the fuzzy queries and ngrams, the tradeoff is between flexibility and index size,
which are better in the prefix approach, and query latency and CPU usage, which are
better for edge ngrams.

WILDCARDS

A wildcard query where you always put a wildcard at the end, such as elastic*, is
equivalent in terms of functionality to a prefix query. In this case, you have the same
alternative of using edge ngrams.

 If the wildcard is in the middle, as with e*search, there’s no real index-time equiv-
alent. You can still use ngrams to match the provided letters e and search, but if you
have no control over how wildcards are used, then the wildcard query is your only
choice.

 If the wildcard is always in the beginning, the wildcard query is typically more
expensive than trailing wildcards because there’s no prefix to hint in which part of the
term dictionary to look for matching terms. In this case, the alternative can be to use
the reverse token filter in combination with edge ngrams, as you saw in chapter 5.
This alternative is illustrated in figure 10.11.

PHRASE QUERIES AND SHINGLES

When you need to account for words that are next to each other, you can use the
match query with type set to phrase, as you saw in chapter 4. Phrase queries are
slower because they have to account not only for the terms but also for their posi-
tions in the documents.

NOTE Positions are enabled by default for all analyzed fields because
index_options is set to positions. If you don’t use phrase queries, only term
queries, you can disable indexing positions by setting index_options to
freqs. If you don’t care about scoring at all—for example, when you index
application logs and you always sort results by timestamp—you can also skip
indexing frequencies by setting index_options to docs.

The index-time alternative to phrase queries is to use shingles. As you saw in chapter 5,
shingles are like ngrams but for terms instead of characters. A text that was tokenized

elasticsearch

Document

source

hcr

hcra

hcrae

hcr

hcra

hcrae

Indexed

terms

Term to

search for

Matching terms
search

Query string

Analyzer:

reverse,

edge ngram

size=3−5

Analyzer:

reverse,

edge ngram

size=3−5

hcr
hcra

hcrae

Figure 10.11 You can use the reverse and edge ngram token filters to match suffixes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

329Other performance tradeoffs
into Introduction, to, and Elasticsearch with a shingle size of 2 would produce the
terms “Introduction to” and “to Elasticsearch.”

 The resulting functionality is similar to phrase queries, and the performance
implications are similar to the ngram situations we discussed earlier: shingles will
increase the index size and slow down indexing in exchange for faster queries.

 The two approaches are not exactly equivalent, in the same way wildcards and
ngrams aren’t equivalent. With phrase queries, for example, you can specify a slop,
which allows for other words to appear in your phrase. For example, a slop of 2 would
allow a sequence like “buy the best phone” to match a query for “buy phone.” That
works because at search time, Elasticsearch is aware of the position of each term,
whereas shingles are effectively single terms.

 The fact that shingles are single terms allows you to use them for better matching
of compound words. For example, many people still refer to Elasticsearch as “elastic
search,” which can be a tricky match. With shingles, you can solve this by using an
empty string as a separator instead of the default white space, as shown in figure 10.12.

As you’ve seen in our discussion of shingles, ngrams, and fuzzy and wildcard queries,
there’s often more than one way to search your documents, but that doesn’t mean
those ways are equivalent. Choosing the best one in terms of performance and flexi-
bility depends a lot on your use case. Next we’ll look more deeply at scripts, where
you’ll find more of the same: multiple ways to achieve the same result, but each
method comes with its own advantages and disadvantages.

10.4.2 Tuning scripts or not using them at all

We first introduced scripts in chapter 3 because they can be used for updates. You saw
them again in chapter 6, where you used them for sorting. In chapter 7 you used
scripts again, this time to build virtual fields at search time using script fields.

 You get a lot of flexibility through scripting, but this flexibility has an important
impact on performance. Results of a script are never cached because Elasticsearch
doesn’t know what’s in the script. There can be something external, like a random
number, that will make a document match now but not match for the next run.

elasticsearch

Indexed

term

elastic search

Query string

elasticsearch

Term to

search for

Analyzer:

shingle,

size=2

token_separator=""

Figure 10.12 Using shingles to match compound words
Licensed to Thomas Snead <n.ordickan@gmail.com>

330 CHAPTER 10 Improving performance
There’s no choice for Elasticsearch other than running the same script for all docu-
ments involved.

 When used, scripts are often the most time- and CPU-consuming part of your
searches. If you want to speed up your queries, a good starting point is to try skipping
scripts altogether. If that’s not possible, the general rule is to get as close to native
code as you can to improve their performance.

 How can you get rid of scripts or optimize them? The answer depends heavily on
the exact use case, but we’ll try to cover the best practices here.

AVOIDING THE USE OF SCRIPTS

If you’re using scripts to generate script fields, as you did in chapter 7, you can do this
at index time. Instead of indexing documents directly and counting the number of
group members in a script by looking at the array length, you can count the number
of members in your indexing pipeline and add it to a new field. In figure 10.13, we
compare the two approaches.

 As with ngrams, this approach to doing the computation at index time works well if
query latency is a higher priority than indexing throughput.

 Besides precomputing, the general rule for performance optimization for script-
ing is to reuse as much of Elasticsearch’s existing functionality as possible. Before
using scripts, can you fulfill the requirements with the function score query that we
discussed in chapter 6? The function score query offers lots of ways to manipulate the
score. Let’s say you want to run a query for “elasticsearch” events, but you’ll boost the
score in the following ways, based on these assumptions:

■ Events happening soon are more relevant. You’ll make events’ scores drop exponen-
tially the farther in the future they are, up to 60 days.

■ Events with more attendees are more popular and more relevant. You’ll increase the
score linearly the more attendees an event has.

members: [Lee, Radu]

Original source

members: [Lee, Radu]
script:

doc[’members’].values.length
Count

Indexed document Terms aggregation

members: [Lee, Radu]

Original source

field:

members_count

members: [Lee, Radu]

members_count: 2
Count

Indexed document Terms aggregation

Figure 10.13 Counting members in a script or while indexing
Licensed to Thomas Snead <n.ordickan@gmail.com>

331Other performance tradeoffs
If you calculate the number of event attendees at index time (name the field
attendees_count), you can achieve both criteria without using any script:

 "function_score": {
 "functions": [
 {
 "linear": {
 "date": {
 "origin": "2013-07-25T18:00",
 "scale": "60d"
 }
 }
 },
 {
 "field_value_factor": {
 "field": "attendees_count"
 }
 }
]
 }

NATIVE SCRIPTS

If you want the best performance from a script, writing native scripts in Java is the best
way to go. Such a native script would be an Elasticsearch plugin, and you can look in
appendix B for a complete guide on how to write one.

 The main disadvantage with native scripts is that they have to be stored on every
node in Elasticsearch’s classpath. Changing a script implies updating it on all the
nodes of your cluster and restarting them. This won’t be a problem if you don’t have
to change your queries often.

 To run a native script in your query, set lang to native and the name of the script
as the script content. For example, if you have a plugin with a script called number-
OfAttendees that calculates the number of event attendees on the fly, you can use it in
a stats aggregation like this:

"aggregations": {
 "attendees_stats": {
 "stats": {
 "script": "numberOfAttendees",
 "lang": "native"
 }
 }
}

LUCENE EXPRESSIONS

If you have to change scripts often or you want to be prepared to change them with-
out restarting all your clusters, and your scripts work with numerical fields, Lucene
expressions are likely to be the best choice.

 With Lucene expressions, you provide a JavaScript expression in the script at query
time, and Elasticsearch compiles it in native code, making it as quick as a native script.
Licensed to Thomas Snead <n.ordickan@gmail.com>

332 CHAPTER 10 Improving performance
The big limitation is that you have access only to indexed numeric fields. Also, if a
document misses the field, the value of 0 is taken into account, which might skew
results in some use cases.

 To use Lucene expressions, you’d set lang to expression in your script. For exam-
ple, you might have the number of attendees already, but you know that only half of
them usually show up, so you want to calculate some stats based on that number:

 "aggs": {
 "expected_attendees": {
 "stats": {
 "script": "doc['attendees_count'].value/2",
 "lang": "expression"
 }
 }
 }

If you have to work with non-numeric or non-indexed fields and you want to be able
to easily change scripts, you can use Groovy—the default language for scripting since
Elasticsearch 1.4. Let’s see how you can optimize Groovy scripts.

TERM STATISTICS

If you need to tune the score, you can access Lucene-level term statistics without hav-
ing to calculate the score in the script itself—for example, if you only want to compute
the score based on the number of times that term appears in the document. Unlike
Elasticsearch’s defaults, you don’t care about the length of the field in that document
or the number of times that term appears in other documents. To do that, you can
have a script score that only specifies the term frequency (number of times the term
appears in the document), as shown in the following listing.

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "function_score": {
 "filter": {
 "term": {
 "title": "elasticsearch"
 }
 },
 "functions": [
 {
 "script_score": {
 "script": "_index[\"title\"][\"elasticsearch\"].tf() +

_index[\"description\"][\"elasticsearch\"].tf()",
 "lang": "groovy"
 }
 }
]
 }
 }
}'

Listing 10.9 Script score that only specifies term frequency

Filter all documents with
the term “elasticsearch”
in the title field.

Compute relevancy by looking at
the term’s frequency in the title
and description fields.

Access term frequency via
the tf() function belonging
to the term, which belongs

to the field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

333Other performance tradeoffs
ACCESSING FIELD DATA

If you need to work with the actual content of a document’s fields in a script, one
option is to use the _source field. For example, you’d get the organizer field by using
_source['organizer'].

 In chapter 3, you saw how you can store individual fields instead of alongside
_source. If an individual field is stored, you can access the stored content, too. For
example, the same organizer field can be retrieved with _fields['organizer'].

 The problem with _source and _fields is that going to the disk to fetch the field
content of that particular field is expensive. Fortunately, this slowness is exactly what
made field data necessary when Elasticsearch’s built-in sorting and aggregations
needed to access field content. Field data, as we discussed in chapter 6, is tuned for
random access, so it’s best to use it in your scripts, too. It’s often orders of magnitude
faster than the _source or _fields equivalent, even if field data isn’t already loaded
for that field when the script is first run (or if you use doc values, as explained in chap-
ter 6).

 To access the organizer field via field data, you’d refer to doc['organizer']. For
example, you can return groups where the organizer isn’t a member, so you can ask
them why they don’t participate to their own groups:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "script": {
 "script": "return

doc.organizer.values.intersect(doc.members.values).isEmpty()",
 }
 }
 }
 }
}'

There’s one caveat for using doc['organizer'] instead of _source['organizer'] or
the _fields equivalent: you’ll access the terms, not the original field of the docu-
ment. If an organizer is 'Lee', and the field is analyzed with the default analyzer,
you’ll get 'Lee' from _source and 'lee' from doc. There are tradeoffs everywhere,
but we assume you’ve gotten used to them at this point in the chapter.

 Next, we’ll take a deeper look at how distributed searches work and how you can
use search types to find a good balance between having accurate scores and low-
latency searches.

10.4.3 Trading network trips for less data and better distributed scoring

Back in chapter 2, you saw how when you hit an Elasticsearch node with a search
request, that node distributes the request to all the shards that are involved and aggre-
gates the individual shard replies into one final reply to return to the application.
Licensed to Thomas Snead <n.ordickan@gmail.com>

334 CHAPTER 10 Improving performance
 Let’s take a deeper look at how this works. The naïve approach would be to get N
documents from all shards involved (where N is the value of size), sort them on the
node that received the HTTP request (let’s call it the coordinating node), pick the top
N documents, and return them to the application. Let’s say that you send a request
with the default size of 10 to an index with the default number of 5 shards. This means
that the coordinating node will fetch 10 whole documents from each shard, sort
them, and return only the top 10 from those 50 documents. But what if there were 10
shards and 100 results? The network overhead of transferring the documents and the
memory overhead of handling them on the coordinating node would explode, much
like specifying large shard_size values for aggregations are bad for performance.

 How about returning only the IDs of those 50 documents and the metadata
needed for sorting to the coordinating node? After sorting, the coordinating node
can fetch only the required top 10 documents from the shards. This would reduce the
network overhead for most cases but will involve two round-trips.

 With Elasticsearch, both options are available by setting the search_type parame-
ter to the search. The naïve implementation of fetching all involved documents is
query_and_fetch, whereas the two-trip method is called query_then_fetch, which
is also the default. A comparison of the two is shown in figure 10.14.

 The default query_then_fetch (shown on the right of the figure) gets better as
you hit more shards, as you request more documents via the size parameter, and

shard 2

query: elasticsearch

size: 10

search_type: query_and_fetch

Search request Return result Return result

Forward search request to shard,

asking for top 10 documents

Forward search request to shard, asking

for sorting criteria of top 10 documents

Fetch relevant

results only from

the shards

node receiving

request

Fetch relevant

results only from

the shards

Sort

per-shard

results into

bigger result

Sort

per-shard

results into

bigger result

shard 1 shard 2

query: elasticsearch

size: 10

search_type: query_then_fetch

Search request

node receiving

request

shard 1

Figure 10.14 Comparison between query_and_fetch and query_then_fetch
Licensed to Thomas Snead <n.ordickan@gmail.com>

335Other performance tradeoffs
as documents get bigger because it will transfer much less data over the network.
query_and_fetch is only faster when you hit one shard—that’s why it’s used implicitly
when you search a single shard, when you use routing, or when you only get the
counts (we’ll discuss this later). Right now you can specify query_and_fetch explicitly,
but in version 2.0 it will only be used internally for these specific use cases.11

DISTRIBUTED SCORING

By default, scores are calculated per shard, which can lead to inaccuracies. For exam-
ple, if you search for a term, one of the factors is the document frequency (DF), which
shows how many times the term you search for appears in all documents. Those “all
documents” are by default “all documents in this shard.” If the DF of a term is signifi-
cantly different between shards, scoring might not reflect reality. You can see this in
figure 10.15, where doc 2 gets a higher score than doc 1, even though doc 1 has more
occurrences of “elasticsearch,” because there are fewer documents with that term in
its shard.

 You can imagine that with a high enough number of documents, DF values would
naturally balance across shards, and the default behavior would work just fine. But if
score accuracy is a priority or if DF is unbalanced for your use case (for example, if you’re
using custom routing), you’ll need a different approach.

 That approach could be to change the search type from query_then_fetch to
dfs_query_then_fetch. The dfs part will tell the coordinating node to make an extra
call to the shards in order to gather document frequencies of the searched terms. The
aggregated frequencies will be used to calculate the score, as you can see in figure 10.16,
ranking your doc 1 and doc 2 correctly.

11 https://github.com/elastic/elasticsearch/issues/9606

query: elasticsearch

shard 1: DF for "elasticsearch" = 10

doc1:

TF for "elasticsearch" = 2

TF/IDF weight = 2/10 = 0.2

shard 2: DF for "elasticsearch" = 2

doc2:

TF for "elasticsearch" = 1

TF/IDF weight = 1/2 = 0.5

Figure 10.15 Uneven distribution of DF can lead to incorrect ranking.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/9606

336 CHAPTER 10 Improving performance
You probably already figured out that DFS queries are slower because of the extra net-
work call, so make sure that you actually get better scores before switching. If you have a
low-latency network, this overhead can be negligible. If, on the other hand, your network
isn’t fast enough or you have high query concurrency, you may see a significant overhead.

RETURNING ONLY COUNTS

But what if you don’t care about scoring at all and you don’t need the document con-
tent, either? For example, you need only the document count or the aggregations. In
such cases, the recommended search type is count. count asks the involved shards
only for the number of documents that match and adds up those numbers.

TIP In version 2.0, adding size=0 to a query will automatically do the same
logic that search_type=count currently does, and search_type=count will
be deprecated. More details can be found here: https://github.com/elastic/
elasticsearch/pull/9296.

10.4.4 Trading memory for better deep paging

In chapter 4, you learned that you’d use size and from to paginate the results of your
query. For example, to search for “elasticsearch” in get-together events and get the
fifth page of 100 results, you’d run a request like this:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "from": 400,
 "size": 100
}'

query: elasticsearch

shard 1: DF for "elasticsearch" = 10

doc1:

TF for "elasticsearch" = 2

TF/IDF weight = 2/12 = 0.17

shard 2: DF for "elasticsearch" = 2

doc2:

TF for "elasticsearch" = 1

TF/IDF weight = 1/12 = 0.8

Total DF for

elasticsearch:

12

Figure 10.16 dfs search types use an extra network hop to compute global DFs, which are used for scoring.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/pull/9296
https://github.com/elastic/elasticsearch/pull/9296

337Other performance tradeoffs
This will effectively fetch the top 500 results, sort them, and return only the last 100.
You can imagine how inefficient this gets as you go deeper with pages. For example, if
you change the mapping and want to re-index all existing data into a new index, you
might not have enough memory to sort through all the results in order to return the
last pages.

 For this kind of scenario you can use the scan search type, as you’ll do in listing 10.10,
to go through all the get-together groups. The initial reply returns only the scroll ID,
which uniquely identifies this request and will remember which pages were already
returned. To start fetching results, send a request with that scroll ID. Repeat the same
request to fetch the next page until you either have enough data or there are no more
hits to return—in which case the hits array is empty.

curl "localhost:9200/get-together/event/_search?pretty&q=elasticsearch\
&search_type=scan\
&scroll=1m\
&size=100"
reply
{
 "_scroll_id":

"c2NhbjsxOzk2OjdZdkdQOTJLU1NpNGpxRWh4S0RWUVE7MTt0b3RhbF9oaXRzOjc7",
[...]
 "hits": {
 "total": 7,
 "max_score": 0,
 "hits": []
[...]
curl 'localhost:9200/_search/scroll?scroll=1m&pretty' -d

'c2NhbjsxOzk2OjdZdkdQOTJLU1NpNGpxRWh4S0RWUVE7MTt0b3RhbF9oaXRzOjc7'
reply
{
 "_scroll_id" : "c2NhbjswOzE7dG90YWxfaGl0czo3Ow==",
[...]
 "hits" : {
 "total" : 7,
 "max_score" : 0.0,
 "hits" : [{
 "_index" : "get-together",
[...]
curl 'localhost:9200/_search/scroll?scroll=1m&pretty' -d

'c2NhbjswOzE7dG90YWxfaGl0czo3Ow=='

As with other searches, scan searches accept a size parameter to control the page
size. But this time, the page size is calculated per shard, so the actual returned size
would be size times the number of shards. The timeout given in the scroll parame-
ter of each request is renewed each time you get a new page; that’s why you can have a
different timeout with every new request.

Listing 10.10 Use scan search type

Elasticsearch will wait
one minute for the next
request (see below).The size of

each page

You get back a scroll ID
that you’ll use in the

next request.You don’t get any results
yet, just their number.

Fetch the first page
with the scroll ID you

got previously;
specify a timeout for

the next request.

You get another
scroll ID to use for
the next request.

This time you get a
page of results.

Continue getting pages by using
the last scroll ID, until the hits
array is empty again.
Licensed to Thomas Snead <n.ordickan@gmail.com>

338 CHAPTER 10 Improving performance
NOTE It may be tempting to have big timeouts so that you’re sure a scroll
doesn’t expire while you’re processing it. The problem is that if a scroll is
active and not used, it wastes resources, taking up some JVM heap to remem-
ber the current page and disk space taken by Lucene segments that can’t be
deleted by merges until the scroll is completed or expired.

The scan search type always returns results in the order in which it encounters them
in the index, regardless of the sort criteria. If you need both deep paging and sorting,
you can add a scroll parameter to a regular search request. Sending a GET request to
the scroll ID will get the next page of results. This time, size works accurately, regard-
less of the number of shards. You also get the first page of results with the first request,
just like you get with regular searches:

% curl 'localhost:9200/get-together/event/_search?pretty&scroll=1m' -d ' {
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 }
}'

From a performance perspective, adding scroll to a regular search is more expensive
than using the scan search type because there’s more information to keep in memory
when results are sorted. That being said, deep paging is much more efficient than the
default because Elasticsearch doesn’t have to sort all previous pages to return the cur-
rent page.

 Scrolling is useful only when you know in advance that you want to do deep pag-
ing; it’s not recommended for when you need only a few pages of results. As with
everything in this chapter, you pay a price for every performance improvement. In the
case of scrolling, that price is to keep information about the current search in mem-
ory until the scroll expires or you have no more hits.

10.5 Summary
In this chapter we looked at a number of optimizations you can do to increase the
capacity and responsiveness of your cluster:

■ Use the bulk API to combine multiple index, create, update, or delete opera-
tions in the same request.

■ To combine multiple get or search requests, you can use the multiget or multi-
search API, respectively.

■ A flush operation commits in-memory Lucene segments to disk when the index
buffer size is full, the transaction log is too large, or too much time has passed
since the last flush.

■ A refresh makes new segments—flushed or not—available for searching. During
heavy indexing, it’s best to lower the refresh rate or disable refresh altogether.
Licensed to Thomas Snead <n.ordickan@gmail.com>

339Summary
■ The merge policy can be tuned for more or less segments. Fewer segments
make searches faster, but merges take more CPU time. More segments make
indexing faster by spending less time on merging, but searches will be slower.

■ An optimize operation forces a merge, which works well for static indices that
get lots of searches.

■ Store throttling may limit indexing performance by making merges fall behind.
Increase or remove the limits if you have fast I/O.

■ Combine filters that use bitsets in a bool filter and filters that don’t in and/or/
not filters.

■ Cache counts and aggregations in the shard query cache if you have static indices.
■ Monitor JVM heap and leave enough headroom so you don’t experience

heavy garbage collection or out-of-memory errors, but leave some RAM for OS
caches, too.

■ Use index warmers if the first query is too slow and you don’t mind slower
indexing.

■ If you have room for bigger indices, using ngrams and shingles instead of fuzzy,
wildcard, or phrase queries should make your searches faster.

■ You can often avoid using scripts by creating new fields with needed data in
your documents before indexing them.

■ Try to use Lucene expressions, term statistics, and field data in your scripts
whenever they fit.

■ If your scripts don’t need to change often, look at appendix B to learn how to
write a native script in an Elasticsearch plugin.

■ Use dfs_query_then_fetch if you don’t have balanced document frequencies
between shards.

■ Use the count search type if you don’t need any hits and the scan search type if
you need many.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Administering your cluster
We’ve covered a lot of material in this book, and we hope you now feel comfortable
working with the Elasticsearch APIs. In this chapter you’ll augment the APIs you’ve
learned thus far and use them with the goal of monitoring and tuning your Elastic-
search cluster for increasing performance and implementing disaster recovery.

 Both developers and administrators will eventually be faced with the prospect of
having to monitor and administer their Elasticsearch cluster. Whether your system
is under high or moderate use, it will be important for you to understand and iden-
tify bottlenecks and be prepared in the event of a hardware or system failure.

 This chapter covers Elasticsearch cluster administration operations using the
REST API, which you should now feel comfortable with, given the exposure through-
out this book. This will enable you to identify and address possible performance
bottlenecks, using real-time monitoring and best practices.

This chapter covers
■ Improving default configuration settings
■ Creating default index settings with templates
■ Monitoring for performance
■ Using backup and restore
340

Licensed to Thomas Snead <n.ordickan@gmail.com>

341Improving defaults
 To that end, we’ll cover three overarching topics: improving defaults, monitoring
for problems, and effectively using the backup system, with the simple premise that
effective performance monitoring is necessary for system optimization and that under-
standing your system will aid in the planning of disaster scenarios.

11.1 Improving defaults
Although the out-of-the-box Elasticsearch configuration will satisfy the needs of most
users, it’s important to note that it’s a highly flexible system that can be tuned beyond
its default settings for increased performance.

 Most uses of Elasticsearch in production environments may fall into the category
of occasional full-text search, but a growing number of deployments are pushing for-
merly edge-case uses into more common installations, such as the growing trends of
using Elasticsearch as a sole source of data, logging aggregators, and even using it in
hybrid storage architectures where it’s used in conjunction with other database types.
These exciting new uses open the door for us to explore interesting ways in which to
tune and optimize the Elasticsearch default settings.

11.1.1 Index templates

Creating new indices and associated mappings in Elasticsearch is normally a simple
task once the initial design planning has been completed. But there are some scenar-
ios in which future indices must be created with the same settings and mappings as
the previous ones. These scenarios include the following:

■ Log aggregation—In this situation a daily log index is needed for efficient query-
ing and storage, much as rolling log file appenders work. A common example
of this is found in cloud-based deployments, where distributed systems push
their logs onto a central Elasticsearch cluster. Configuring the cluster to handle
automatic templating of log data by day helps organize the data and eases
searching for the proverbial needle in the haystack.

■ Regulatory compliance—Here blocks of data must be either kept or removed after
a certain time period to meet compliance standards, as in financial sector com-
panies where Sarbanes-Oxley compliance is mandated. These sorts of mandates
require organized record keeping where template systems shine.

■ Multi-tenancy—Systems that create new tenants dynamically often have a need
to compartmentalize tenant-specific data.

Templates have their uses when a proven and repeatable pattern is needed for
homogenous data storage. The automated nature of how Elasticsearch applies tem-
plates is also an attractive feature.

CREATING A TEMPLATE

As the name suggests, an index template will be applied to any new index created.
Indices that match a predefined naming pattern will have a template applied to them,
Licensed to Thomas Snead <n.ordickan@gmail.com>

342 CHAPTER 11 Administering your cluster
ensuring uniformity in index settings across all of the matching indices. The index-
creation event will have to match the template pattern for the template to be applied.
There are two ways to apply index templates to newly created indices in Elasticsearch:

■ By way of the REST API
■ By a configuration file

The former assumes a running cluster; the latter does not and is often used in prede-
ployment scenarios that a dev ops engineer or system administrator would employ in a
production environment.

 In this section we’ll illustrate a simple index template used for log aggregation, so
your log aggregation tool will have a new index created per day. At the time of this
writing, Logstash was the most popular log-aggregation tool used alongside Elastic-
search, and its integration was seamless, so focusing on Logstash-to-Elasticsearch
index template creation makes the most sense.

 By default, Logstash makes API calls using the daily timestamp appended to the
index name; for example, logstash-11-09-2014. Assuming you’re using the Elasticsearch
default settings, which allow for automatic index creation, once Logstash makes a call
to your cluster with a new event, the new index will be created with a name of logstash-
11-09-2014, and the document type will be automapped. You’ll use the REST API
method first, as shown here:

curl -XPUT localhost:9200/_template/logging_index -d '{
 "template" : "logstash-*",
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : { … },
 "aliases" : { "november" : {} }
}’

Using the PUT command, you instruct Elasticsearch to apply this template whenever
an index call matching the logstash-* pattern is received. In this case, when Log-
stash posts a new event to Elasticsearch and an index doesn’t exist by the name given,
a new one will be created using this template.

 This template also goes a bit further in applying an alias, so you can group all of
these indices under a given month. You’ll have to rename the index manually each
month, but it affords a convenient way to group indices of log events by month.

TEMPLATES CONFIGURED ON THE FILE SYSTEM

If you want to have templates configured on the file system, which sometimes makes it
easier to manage maintenance, the option exists. Configuration files must follow
these simple rules:

■ Template configurations must be in JSON format. For convenience, name them
with a .json extension: <FILENAME>.json.

PUT command

Applies this template
to any index name that
matches the pattern
Licensed to Thomas Snead <n.ordickan@gmail.com>

343Improving defaults

num
o

the
■ Template definitions should be located in the Elasticsearch configuration location
under a templates directory. This path is defined in the cluster’s configuration file
(elasticsearch.yml) as path.conf; for example, <ES_HOME>/config/templates/*.

■ Template definitions should be placed in the directories of nodes that are eligi-
ble to be elected as master.

Using the previous template definition, your template.json file will look like this:

{
 "template" : "logstash-*",
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : { … },
 "aliases" : { "november" : {} }
}

Much like defining via the REST API, now every index matching the logstash-* pat-
tern will have this template applied.

MULTIPLE TEMPLATE MERGING

Elasticsearch also enables you to configure multiple templates with different settings.
You can then expand on the previous example and configure a template to handle log
events by month and another that will store all log events in one index, as the follow-
ing listing shows.

curl -XPUT localhost:9200/_template/logging_index_all -d '{
 "template" : "logstash-09-*",
 "order" : 1,
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : {
 "date" : { "store": false }
},
 "alias" : { "november" : {} }
}'

curl -XPUT http://localhost:9200/_template/logging_index -d '{
 "template" : "logstash-*",
 "order" : 0,
 "settings" : {
 "number_of_shards" : 2,
 "number_of_replicas" : 1
 },
 "mappings" : {
 "date" : { "store": true }
 }
}'

Listing 11.1 Configuring multiple templates

Apply this template to
any index beginning
with "logstash-09-".

Highest
order

ber will
verride
 lowest

order
number
setting

Apply this template to
any index beginning with
"logstash-*" and store
the date field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

344 CHAPTER 11 Administering your cluster
In the previous example, the topmost template will be responsible for November-
specific logs because it matches on the pattern of index names beginning with
"logstash-09-". The second template acts as a catchall, aggregating all log stash indi-
ces and even containing a different setting for the date mapping.

 One thing to note about this configuration is the order attribute. This attribute
implies that the lowest order number will be applied first, with the higher order num-
ber then overriding it. Because of this, the two templates settings are merged, with the
effect of all November log events not having the date field stored.

RETRIEVING INDEX TEMPLATES

To retrieve a list of all templates, a convenience API exists:

curl -XGET localhost:9200/_template/

Likewise, you’re able to retrieve either one or many individual templates by name:

curl -XGET localhost:9200/_template/logging_index

curl -XGET localhost:9200/_template/logging_index_1,logging_index_2

Or you can retrieve all template names that match a pattern:

curl -XGET localhost:9200/_template/logging_*

DELETING INDEX TEMPLATES

Deleting a template index is achieved by using the template name. In the previous sec-
tion, we defined a template as such:

curl -XPUT 'localhost:9200/_template/logging_index' -d '{ … }'

To delete this template, use the template name in the request:

curl -XDELETE 'localhost:9200/_template/logging_index'

11.1.2 Default mappings

As you learned in chapter 2, mappings enable you to define specific fields, their types,
and even how Elasticsearch will interpret and store them. Furthermore, you learned
how Elasticsearch supports dynamic mapping in chapter 3, removing the need to
define your mappings at index-creation time; instead those mappings are dynamically
generated based on the content of the initial document you index. This section, much
like the previous one that covered default index templates, will introduce you to the
concept of specifying default mappings, which act as a convenience utility for repeti-
tive mapping creation.

 We just showed you how index templates can be used to save time and add unifor-
mity across similar datatypes. Default mappings have the same beneficial effects and
can be thought of in the same vein as templates for mapping types. Default mappings
are most often used when there are indices with similar fields. Specifying a default
mapping in one place removes the need to repeatedly specify it across every index.
Licensed to Thomas Snead <n.ordickan@gmail.com>

345Improving defaults
DYNAMIC MAPPINGS

By default, Elasticsearch employs dynamic mapping: the ability to determine the data-
type for new fields within a document. You may have experienced this when you first
indexed a document and noticed that Elasticsearch dynamically created a mapping
for it as well as the datatype for each of the fields. You can alter this behavior by
instructing Elasticsearch to ignore new fields or even throw exceptions on unknown
fields. You’d normally want to restrict the new addition of fields to prevent data pollu-
tion and help maintain control over the schema definition.

DISABLING DYNAMIC MAPPING Note also that you can disable the dynamic cre-
ation of new mappings for unmapped types by setting index.mapper.dynamic
to false in your elasticsearch.yml configuration.

The next listing shows how to add a dynamic mapping.

curl -XPUT 'localhost:9200/first_index' -d
'{
 "mappings": {
 "person": {
 "dynamic": "strict",
 "properties": {
 "email": { "type": "string"},
 “created_date": { "type": "date" }
 }
 }
 }
}'

Mapping is not retroactive
Note that specifying a default mapping doesn’t apply the mapping retroactively.
Default mappings are applied only to newly created types.

Consider the following example, where you want to specify a default setting for how
you store the _source for all of your mappings, except for a Person type:

curl -XPUT 'localhost:9200/streamglue/_mapping/events' -d ' {
 "Person" :
 {
 "_source" : {"enabled" : false}
 },
 "_default_" :
 {"_source" : {"enabled" : true }
 }
}'

In this case, all new mappings will by default store the document _source, but any
mapping of type Person, by default, will not. Note that you can override this behavior
in individual mapping specifications.

Listing 11.2 Adding a dynamic mapping

Throw exception if an
unknown field is encountered
at index time.
Licensed to Thomas Snead <n.ordickan@gmail.com>

346 CHAPTER 11 Administering your cluster
curl -XPUT 'localhost:9200/second_index' -d
'{
 "mappings": {
 "person": {
 "dynamic": "true",
 "properties": {
 "email": { "type": "string"},
 “created_date": { "type": "date" }
 }
 }
 }
}'

The first mapping restricts the creation of new fields in the person mapping. If you
attempt to insert a document with an unmapped field, Elasticsearch will respond with
an exception and not index the document. For instance, try to index a document with
an additional first_name field added:

curl -XPOST 'localhost:9200/first_index/person' -d
'{
"email": "foo@bar.com",
"created_date" : "2014-09-01",
"first_name" : "Bob"
}'

Here’s the response:

{
error: "StrictDynamicMappingException[mapping set to strict, dynamic

introduction of [first_name] within [person] is not allowed]"
status: 400
}

DYNAMIC MAPPING AND TEMPLATING TOGETHER

This section wouldn’t be complete if we didn’t cover how dynamic mapping and
dynamic templates work together, allowing you to apply different mappings depend-
ing on the field name or datatype.

 Earlier we explored how index templates can be used to autodefine newly created
indices for a uniform set of indices and mappings. We can expand on this idea now by
incorporating what we’ve covered with dynamic mappings.

 The following example solves a simple problem when dealing with data compris-
ing UUIDs. These are unique alphanumeric strings that contain hyphen separators,
such as "b20d5470-d7b4-11e3-9fa6-25476c6788ce". You don’t want Elasticsearch ana-
lyzing them with a default analyzer because it would split the UUID by hyphen when
building the index tokens. You want to be able to search by the complete string UUID, so
you need Elasticsearch to store the entire string as a token. In this case, you need to
instruct Elasticsearch to not analyze any string field whose name ends in "_guid":

curl -XPUT 'http://localhost:9200/myindex' -d '
{
 "mappings" : {

Allow the dynamic
creation of new
fields.
Licensed to Thomas Snead <n.ordickan@gmail.com>

347Allocation awareness
 "my_type" : {
 "dynamic_templates" : [{
 "UUID" : {
 "match" : "*_guid",
 "match_mapping_type" : "string",
 "mapping" : {
 "type" : "string",
 "index" : "not_analyzed"
 }
 }
 }]
 }
 }
};

In this example, the dynamic template is used to dynamically map fields that
matched a certain name and type, giving you more control over how your data is
stored and made searchable by Elasticsearch. As an additional note, you can use the
path_match or path_unmatch keyword, which allows you to match or unmatch the
dynamic template using dot notation—for instance, if you wanted to match some-
thing like person.*.email. Using this logic, you can see a match on a data structure
such as this:

{
 "person" : {
 "user" : {
 "email": { "bob@domain.com" }
 }
}

Dynamic templates are a convenient method of automating some of the more tedious
aspects of Elasticsearch management. Next, we’ll explore allocation awareness.

11.2 Allocation awareness
This section covers the concept of laying out cluster topology to reduce central points
of failure and improve performance by using the concept of allocation awareness.
Allocation awareness is defined as knowledge of where to place copies (replicas) of data.
You can arm Elasticsearch with this knowledge so it intelligently distributes replica
data across a cluster.

11.2.1 Shard-based allocation

Allocation awareness allows you to configure shard allocation using a self-defined
parameter. This is a common best practice in Elasticsearch deployments because it
reduces the chances of having a single point of failure by making sure data is evened
out among the network topology. You can also experience faster read operations, as
nodes deployed on the same physical rack will potentially have a proximity advantage
of not having to go over the network.

Match field names
ending in _guid. Matched fields

must be of type
string.

Define the mapping
you will apply when
a match is made.

Set as type
string.

Don’t analyze
these fields

when indexing.
Licensed to Thomas Snead <n.ordickan@gmail.com>

348 CHAPTER 11 Administering your cluster
 Enabling allocation awareness is achieved by defining a grouping key and setting it
in the appropriate nodes. For instance, you can edit elasticsearch.yml as follows:

cluster.routing.allocation.awareness.attributes: rack

NOTE The awareness attribute can be assigned more than one value. cluster
.routing.allocation.awareness.attributes: rack, group, zone

Using the previous definition, you’ll segment your shards across the cluster using the
awareness parameter rack. You alter the elasticsearch.yml for each of your nodes, set-
ting the value the way you want your network configuration to be. Note that Elastic-
search allows you to set metadata on nodes. In this case, the metadata key will be your
allocation awareness parameter:

node.rack: 1

A simple before-and-after illustration may help in this case. Figure 11.1 shows a cluster
with the default allocation settings.

 This cluster suffers from primary and replica shard data being on the same rack.
With the allocation awareness setting, you can remove the risk, as shown in figure 11.2.

P1

Node 1

node.rack: 1

R1

Node 2

node.rack: 1

P2

Node 3

node.rack: 2

R2

Node 4

node.rack: 2

P1

Node 1

node.rack: 1

R2

Node 2

node.rack: 1

P2

Node 3

node.rack: 2

R1

Node 4

node.rack: 2

Figure 11.1 Cluster with default
allocation settings

Figure 11.2 Cluster with allocation
awareness
Licensed to Thomas Snead <n.ordickan@gmail.com>

349Allocation awareness
Wwith allocation awareness, the primary shards were not moved, but the replicas were
moved to nodes with a different node.rack parameter value. Shard allocation is a con-
venient feature that insured against a central point of failure. A common use is sepa-
rating cluster topology by location, racks, or even virtual machines.

 Next, we’ll take a look at forced allocation with a real-world AWS zone example.

11.2.2 Forced allocation awareness

Forced allocation awareness is useful when you know in advance the group of values
and want to limit the number of replicas for any given group. A real-world example of
where this is commonly used is in cross-zone allocation on Amazon Web Services or
other cloud providers with multizone capabilities. The use case is simple: limit the
number of replicas in one zone if another zone goes down or is unreachable. By doing
this, you reduce the danger of overallocating replicas from another group.

 For example, in this use case you want to enforce allocation at a zone level. First
you specify your attribute, zone, as you did before. Next, you add dimensions to that
group: us-east and us-west. In your elasticsearch.yml, you add the following:

cluster.routing.allocation.awareness.attributes: zone
cluster.routing.allocation.force.zone.values: us-east, us-west

Given these settings, let’s play out this real-world scenario. Let’s say you start a set of
nodes in the East region with node.zone: us-east. You’ll use the defaults here, leav-
ing an index with five primary shards and one replica. Because there are no other
zone values, only the primary shards for your indices will be allocated.

 What you’re doing here is limiting the replicas to balance only on nodes without
your value. If you were to start up your West region cluster, with node.zone: us-west,
replicas from us-east would be allocated to it. No replicas will ever exist for nodes
defined as node.zone: us-east. Ideally, you’d do the same on node.zone: us-west,
thereby ensuring that replicas never exist in the same location. Keep in mind that if
you lose connectivity with us-west, no replicas will ever be created on us-east, or
vice versa.

 Allocation awareness does require some planning up front, but in the event that
allocation isn’t working as planned, these settings can all be modified at runtime
using the Cluster Settings API. They can be persistent, where Elasticsearch applies the
settings even after a restart, or temporary (transient):

curl -XPUT localhost:9200/_cluster/settings -d '{
 "persistent" : {
 "cluster.routing.allocation.awareness.attributes": zone
 "cluster.routing.allocation.force.zone.values": us-east, us-west
 }
}

Cluster allocation can make the difference between a cluster that scales and is resil-
ient to failure and one that isn’t.
Licensed to Thomas Snead <n.ordickan@gmail.com>

350 CHAPTER 11 Administering your cluster

nu
nod

hold
the
 Now that we’ve explored some of the finer adjustments that you can make to Elas-
ticsearch default settings with shard allocation, let’s look at how to monitor the gen-
eral health of your cluster for performance issues.

11.3 Monitoring for bottlenecks
Elasticsearch provides a wealth of information via its APIs: memory consumption,
node membership, shard distribution, and I/O performance. The cluster and node
APIs help you gauge the health and overall performance metrics of your cluster.
Understanding cluster diagnostic data and being able to assess the overall status of the
cluster will alert you to performance bottlenecks, such as unassigned shards and miss-
ing nodes, so you can easily address them.

11.3.1 Checking cluster health

The cluster health API provides a convenient yet coarse-grained view of the overall
health of your cluster, indices, and shards. This is normally the first step in being
alerted to and diagnosing a problem that may be actively occurring in your cluster.
The next listing shows how to use the cluster health API to check overall cluster state.

curl -XGET 'localhost:9200/_cluster/health?pretty';

And the response:

{
 "cluster_name" : "elasticiq",
 "status" : "green",
 "timed_out" : false,
 "number_of_nodes" : 2,
 "number_of_data_nodes" : 2,
 "active_primary_shards" : 10,
 "active_shards" : 10,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 0
}

Taking the response shown here at face value, you can deduce a lot about the general
health and state of the cluster, but there’s much more to reading this simple output
than what’s obvious at first glance. Let’s look a little deeper into the meaning of the

Listing 11.3 Cluster health API request

Cluster status indicator:
convenient general health

indicator of the cluster
Total number of nodes in
the cluster

Total
mber of
es that

 data in
 cluster

Total number of primary shards
for all indices in the cluster

Total number of all shards,
primary and replica, for all
indices in the cluster

Number of shards that
are moving across nodes
at the present time

Number of shards
that are newly created

Number of shards that are
defined within the cluster

state but can’t be found
Licensed to Thomas Snead <n.ordickan@gmail.com>

351Monitoring for bottlenecks
last three indicators in the code: relocating_shards, initializing_shards, and
unassigned_shards.

■ relocating_shards—A number above zero means that Elasticsearch is moving
shards of data across the cluster to improve balance and failover. This ordinarily
occurs when adding a new node, restarting a failed node, or removing a node,
thereby making this a temporary occurrence.

■ initializing_shards—This number will be above zero when you’ve just cre-
ated a new index or restarted a node.

■ unassigned_shards—The most common reason for this value to be above zero
is having unassigned replicas. The issue is common in development environ-
ments, where a single-node cluster has an index defined as having the default,
five shards and one replica. In this case, there’ll be five unassigned replicas.

As you saw from the first line of output, the cluster status is green. There are times
when this may not be so, as in the case of nodes not being able to start or falling away
from the cluster, and although the status value gives you only a general idea of the
health of the cluster, it’s useful to understand what those status values mean for cluster
performance:

■ Green—Both primary and replica shards are fully functional and distributed.
■ Yellow—Normally this is a sign of a missing replica shard. The unassigned_

shards value is likely above zero at this point, making the distributed nature of
the cluster unstable. Further shard loss could lead to critical data loss. Look for
any nodes that aren’t initialized or functioning correctly.

■ Red—This is a critical state, where a primary shard in the cluster can’t be found,
prohibiting indexing operations on that shard and leading to inconsistent
query results. Again, likely a node or several nodes are missing from the cluster.

Armed with this knowledge, you can now take a look at a cluster with a yellow status
and attempt to track down the source of the problem:

curl -XGET 'localhost:9200/_cluster/health?pretty';
{
 "cluster_name" : "elasticiq",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 10,
 "active_shards" : 10,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
}

Given this API call and response, you see that the cluster is now in yellow status, and as
you’ve already learned, the likely culprit is the unassigned_shards value being above
0. The cluster health API provides a more fine-grained operation that will allow you to
Licensed to Thomas Snead <n.ordickan@gmail.com>

352 CHAPTER 11 Administering your cluster
further diagnose the issue. In this case, you can look deeper at which indices are affected
by the unassigned shards by adding the level parameter:

curl -XGET 'localhost:9200/_cluster/health?level=indices&pretty';
{
 "cluster_name" : "elasticiq",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 10,
 "active_shards" : 10,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5,
 "indices" : {
 "bitbucket" : {
 "status" : "yellow",
 "number_of_shards" : 5,
 "number_of_replicas" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 5
 }...

The single-node cluster is experiencing some problems because Elasticsearch is trying
to allocate replica shards across the cluster, but it can’t do so because there’s only one
node running. This leads to the replica shards not being assigned anywhere and
therefore a yellow status across the cluster, as figure 11.3 shows.

Note that the
cluster has only
one node running.

The primary
shards

Here you tell Elasticsearch
to allocate one replica per
primary shard.

Unassigned shards caused by
a lack of available nodes to
support the replica definition

R2R1P2P1

Elasticiq: Node_1

R2P1

Elasticiq: Node_1

R1P2

Elasticiq: Node_2

Yellow status: Single-node

cluster with all shards

confined to one node

Green status: New node

added, causing even

distribution of replicas

Figure 11.3 Yellow
status solved by making
nodes accessible
Licensed to Thomas Snead <n.ordickan@gmail.com>

353Monitoring for bottlenecks
As you can see, an easy remedy is to add a node to the cluster so Elasticsearch can then
allocate the replica shards to that location. Making sure that all of your nodes are run-
ning and accessible is the easiest way to solve the yellow status issue.

11.3.2 CPU: slow logs, hot threads, and thread pools

Monitoring your Elasticsearch cluster may from time to time expose spikes in CPU
usage or bottlenecks in performance caused by a constantly high CPU utilization or
blocked/waiting threads. This section will help demystify some of these possible per-
formance bottlenecks and provide you with the tools needed to identify and address
these issues.

SLOW LOGS

Elasticsearch provides two logs for isolating slow operations that are easily configured
within your cluster configuration file: slow query log and slow index log. By default,
both logs are disabled. Log output is scoped at the shard level. That is, one operation
can represent several lines in the corresponding log file. The advantage to shard-level
logging is that you’ll be better able to identify a problem shard and thereby a node
with the log output, as shown here. It’s important to note at this point that these set-
tings can also be modified using the '{index_name}/_settings' endpoint:

index.search.slowlog.threshold.query.warn: 10s
index.search.slowlog.threshold.query.info: 1s
index.search.slowlog.threshold.query.debug: 2s
index.search.slowlog.threshold.query.trace: 500ms

index.search.slowlog.threshold.fetch.warn: 1s
index.search.slowlog.threshold.fetch.info: 1s
index.search.slowlog.threshold.fetch.debug: 500ms
index.search.slowlog.threshold.fetch.trace: 200ms

As you can see, you can set thresholds for both phases of a search: the query and the
fetch. The log levels (warn, info, debug, trace) allow you finer control over which level
will be logged, something that comes in handy when you simply want to grep your log
file. The actual log file you’ll be outputting to is configured in your logging.yml file,
along with other logging functionality, as shown here:

 index_search_slow_log_file:
 type: dailyRollingFile
 file: ${path.logs}/${cluster.name}_index_search_slowlog.log
 datePattern: "'.'yyyy-MM-dd"
 layout:
 type: pattern
 conversionPattern: "[%d{ISO8601}][%-5p][%-25c] %m%n"

The typical output on a slow log file will appear as this:

[2014-11-09 16:35:36,325][INFO][index.search.slowlog.query] [ElasticIQ-
Master] [streamglue][4] took[10.5ms], took_millis[10], types[], stats[],
search_type[QUERY_THEN_FETCH], total_shards[10],
source[{"query":{"filtered":{"query":{"query_string":{"query":"test"}}}},...]
Licensed to Thomas Snead <n.ordickan@gmail.com>

354 CHAPTER 11 Administering your cluster
[2014-11-09 16:35:36,339][INFO][index.search.slowlog.fetch] [ElasticIQ-
Master] [streamglue][3] took[9.1ms], took_millis[9], types[], stats[],
search_type[QUERY_THEN_FETCH], total_shards[10], ...

SLOW QUERY LOG

The important parts you’re interested in for identifying performance issues are the
query times: took[##ms]. Additionally, it’s helpful to know the shards and indices
involved, and those are identifiable by the [index][shard_number] notation; in this
case it’s [streamglue][4].

SLOW INDEX LOG

Equally useful in discovering bottlenecks during index operations is the slow index
log. Its thresholds are defined in your cluster configuration file, or via the index update
settings API, much like the previous slow log:

index.indexing.slowlog.threshold.index.warn: 10s
index.indexing.slowlog.threshold.index.info: 5s
index.indexing.slowlog.threshold.index.debug: 2s
index.indexing.slowlog.threshold.index.trace: 500ms

As before, the output of any index operation meeting the threshold values will be writ-
ten to your log file, and you’ll see the [index][shard_number] ([bitbucket][2])
and duration (took[4.5ms]) of the index operation:

[2014-11-09 18:28:58,636][INFO][index.indexing.slowlog.index] [ElasticIQ-
Master] [bitbucket][2] took[4.5ms], took_millis[4], type[test],
id[w0QyH_m6Sa2P-juppUy3Tw], routing[], source[] ...

Discovering where your slow queries and index calls are happening will go a long way
in helping remedy Elasticsearch performance problems. Allowing slow performance
to grow unbounded can cause a cascading failure across your entire cluster, leading to
it crashing entirely.

HOT_THREADS API
If you’ve ever experienced high CPU utilization across your cluster, you’ll find the
hot_threads API helpful in identifying specific processes that may be blocked and
causing the problem. The hot_threads API provides a list of blocked threads for every
node in your cluster. Note that unlike other APIs, hot_threads doesn’t return JSON but
instead returns formatted text:

curl -XGET 'http://127.0.0.1:9200/_nodes/hot_threads';

Here’s the sample output:

::: [ElasticIQ-Master][AtPvr5Y3ReW-ua7ZPtPfuQ][loki.local][inet[/
127.0.0.1:9300]]{master=true}
 37.5% (187.6micros out of 500ms) cpu usage by thread
'elasticsearch[ElasticIQ-Master][search][T#191]
10/10 snapshots sharing following 3 elements
...
Licensed to Thomas Snead <n.ordickan@gmail.com>

355Monitoring for bottlenecks
The output of the hot_threads API requires some parsing to understand correctly, so
let’s have a look at what information it provides on CPU performance:

::: [ElasticIQ-Master][AtPvr5Y3ReW-ua7ZPtPfuQ][loki.local][inet[/
127.0.0.1:9300]]{master=true}

The top line of the response includes the node identification. Because the cluster pre-
sumably has more than one node, this is the first indication of which CPU the thread
information belongs to:

 37.5% (187.6micros out of 500ms) cpu usage by thread
'elasticsearch[ElasticIQ-Master][search][T#191]

Here you can see that 37.5% of CPU processing is being spent on a search thread. This
is key to your understanding, because you can then fine-tune your search queries that
may be causing the CPU spike. Expect that the search value won’t always be there.
Elasticsearch may present other values here like merge, index, and the like that iden-
tify the operation being performed on that thread. You know this is CPU-related
because of the cpu usage identifier. Other possible output identifiers here are block
usage, which identifies threads that are blocked, and wait usage for threads in a
WAITING state:

10/10 snapshots sharing following 3 elements

The final line before the stack trace tells you that Elasticsearch found that this thread
with the same stack trace was present in 10 out of the 10 snapshots it took within a few
milliseconds.

 Of course, it’s worth learning how Elasticsearch gathers the hot_threads API infor-
mation for presentation. Every few milliseconds, Elasticsearch collects information
about thread duration, its state (WAITING/BLOCKED), and the duration of the wait or
block for each thread. After a set interval (500 ms by default), Elasticsearch does a sec-
ond pass of the same information-gathering operation. During each of these passes, it
takes snapshots of each stack trace. You can tune the information-gathering process by
adding parameters to the hot_threads API call:

curl -XGET 'http://127.0.0.1:9200/_nodes/
hot_threads?type=wait&interval=1000ms&threads=3';

■ type—One of cpu, wait, or block. Type of thread state to snapshot for.
■ interval—Time to wait between the first and second checks. Defaults to 500 ms.
■ threads—Number of top “hot” threads to display.

THREAD POOLS

Every node in a cluster manages thread pools for better management of CPU and
memory usage. Elasticsearch will seek to manage thread pools to achieve the best per-
formance on a given node. In some cases, you’ll need to manually configure and over-
ride how thread pools are managed to avoid cascading failure scenarios. Under a
heavy load, Elasticsearch may spawn thousands of threads to handle requests, causing
Licensed to Thomas Snead <n.ordickan@gmail.com>

356 CHAPTER 11 Administering your cluster
your cluster to fail. Knowing how to tune thread pools requires intimate knowledge of
how your application is using the Elasticsearch APIs. For instance, an application that
uses mostly the bulk index API should be allotted a larger set of threads. Otherwise,
bulk index requests can become overloaded, and new requests will be ignored.

 You can tune the thread pool settings within your cluster configuration. Thread
pools are divided by operation and configured with a default value depending on the
operation type. For brevity, we’re listing only a few of them:

■ bulk—Defaults to a fixed size based on the number of available processors for
all bulk operations.

■ index—Defaults to a fixed size based on the number of available processors for
index and delete operations.

■ search—Defaults to a fixed size that’s three times the number of available pro-
cessors for count and search operations.

Looking at your elasticsearch.yml configuration, you can see that you can increase the
size of the thread pool queue and number of thread pools for all bulk operations. It’s
also worth noting here that the Cluster Settings API allows you to update these settings
on a running cluster as well:

Bulk Thread Pool
threadpool.bulk.type: fixed
threadpool.bulk.size: 40
threadpool.bulk.queue_size: 200

Note that there are two thread pool types, fixed and cache. A fixed thread pool type
holds a fixed number of threads to handle requests with a backing queue for pending
requests. The queue_size parameter in this case controls the number of threads and
defaults to the five times the number of cores. A cache thread pool type is unbounded,
meaning that a new thread will be created if there are any pending requests.

 Armed with the cluster health API, slow query and index logs, and thread informa-
tion, you can diagnose CPU-intensive operations and bottlenecks more easily. The
next section will cover memory-centric information, which can help in diagnosing and
tuning Elasticsearch performance issues.

11.3.3 Memory: heap size, field, and filter caches

This section will explore efficient memory management and tuning for Elasticsearch
clusters. Many aggregation and filtering operations are memory-bound within Elastic-
search, so knowing how to effectively improve the default memory-management
settings in Elasticsearch and the underlying JVM will be a useful tool for scaling
your cluster.

HEAP SIZE

Elasticsearch is a Java application that runs on the Java Virtual Machine (JVM), so it’s
subject to memory management by the garbage collector. The concept behind the garbage
Licensed to Thomas Snead <n.ordickan@gmail.com>

357Monitoring for bottlenecks
collector is a simple one: it’s triggered when memory is running low, clearing out
objects that have been dereferenced and thus freeing up memory for other JVM appli-
cations to use. These garbage-collection operations are time consuming and cause
system pauses. Loading too much data in memory can also lead to OutOfMemory
exceptions, causing failures and unpredictable results—a problem that even the gar-
bage collector can’t address.

 For Elasticsearch to be fast, some operations are performed in memory because of
improved access to field data. For instance, Elasticsearch doesn’t just load field data
for documents that match your query; it loads values for all the documents in your
index. This makes your subsequent query much faster by virtue of having quick access
to in-memory data.

 The JVM heap represents the amount of memory allocated to applications running
on the JVM. For that reason, it’s important to understand how to tune its performance
to avoid the ill effects of garbage collection pauses and OutOfMemory exceptions. You
set the JVM heap size via the HEAP_SIZE environment variable. The two golden rules to
keep in mind when setting your heap size are as follows:

■ Maximum of 50% of available system RAM—Allocating too much system memory
to the JVM means there’s less memory allocated to the underlying file-system
cache, which Lucene makes frequent use of.

■ Maximum of 32 GB RAM—The JVM changes its behavior at over 32 GB allocated
by not using compressed ordinary object pointers (OOP). This means that set-
ting the heap size under 32 GB uses approximately half the memory space.

FILTER AND FIELD CACHE

Caches play an important role in Elasticsearch performance, allowing for the effective
use of filters, facets, and index field sorting. This section will explore two of these
caches: the filter cache and the field data cache.

 The filter cache stores the results of filters and query operations in memory. This
means that an initial query with a filter applied will have its results stored in the filter
cache. Every subsequent query with that filter applied will use the data from the cache
and not go to disk for the data. The filter cache effectively reduces the impact on CPU
and I/O and leads to faster results of filtered queries.

 Two types of filter caches are available in Elasticsearch:

■ Index-level filter cache
■ Node-level filter cache

The node-level filter cache is the default setting and the one we’ll be covering. The
index-level filter cache isn’t recommended because you can’t predict where the index
will reside inside the cluster and therefore can’t predict memory usage.

 The node-level filter cache is an LRU (least recently used) cache type. That means
that when the cache becomes full, cache entries that are used the least amount of
times are destroyed first to make room for new entries. Choose this cache type by
Licensed to Thomas Snead <n.ordickan@gmail.com>

358 CHAPTER 11 Administering your cluster
setting index.cache.filter.type to node, or don’t set it at all; it’s the default value.
Now you can set the size with the indices.cache.filter.size property. It will take
either a percentage value of memory (20%) to allocate or a static value (1024 MB)
within your elasticsearch.yml configuration for the node. Note that a percentage prop-
erty uses the maximum heap for the node as the total value to calculate from.

FIELD-DATA CACHE

The field-data cache is used to improve query execution times. Elasticsearch loads
field values into memory when you run a query and keeps those values in the field-
data cache for subsequent requests to use. Because building this structure in memory
is an expensive operation, you don’t want Elasticsearch performing this on every
request, so the performance gains are noticeable. By default, this is an unbounded
cache, meaning that it will grow until it trips the field-data circuit breaker (covered in
the next section). By specifying a value for the field-data cache, you tell Elasticsearch
to evict data from the structure once the upper bound is reached.

 Your configuration should include an indices.fielddata.cache.size property
that can be set to either a percentage value (20%) or a static value (16 GB). These values
represent the percentage or static segment of node heap space to use for the cache.

 To retrieve the current state of the field-data cache, there are some handy APIs
available:

■ Per-Node:

curl -XGET 'localhost:9200/_nodes/stats/indices/
fielddata?fields=*&pretty=1';

■ Per-Index:

curl -XGET 'localhost:9200/_stats/fielddata?fields=*&pretty=1';

■ Per-Node Per-Index:

curl -XGET 'localhost:9200/_nodes/stats/indices/
fielddata?level=indices&fields =*&pretty=1';

Specifying fields=* will return all field names and values. The output of these APIs
looks similar to the following:

 "indices" : {
 "bitbucket" : {
 "fielddata" : {
 "memory_size_in_bytes" : 1024mb,
 "evictions" : 200,
 "fields" : { … }
 }
 }, ...

These operations will break down the current state of the cache. Take special note of
the number of evictions. Evictions are an expensive operation and a sign that the
field-data cache may be set to too small of a value.
Licensed to Thomas Snead <n.ordickan@gmail.com>

359Monitoring for bottlenecks
CIRCUIT BREAKER

As mentioned in the previous section, the field-data cache may grow to the point that
it causes an OutOfMemory exception. This is because the field-data size is calculated
after the data is loaded. To avoid such events, Elasticsearch provides circuit breakers.

 Circuit breakers are artificial limits imposed to help reduce the chances of an OutOf-
Memory exception. They work by introspecting data fields requested by a query to
determine whether loading the data into the cache will push the total size over the
cache size limit. Two circuit breakers are available in Elasticsearch, as well as a par-
ent circuit breaker that sets a limit on the total amount of memory that all circuit
breakers may use:

■ indices.breaker.total.limit—Defaults to 70% of heap. Doesn’t allow the
field-data and request circuit breakers to surpass this limit.

■ indices.breaker.fielddata.limit—Defaults to 60% of heap. Doesn’t allow
the field-data cache to surpass this limit.

■ indices.breaker.request.limit—Defaults to 40% of heap. Controls the size
fraction of heap allocated to operations like aggregation bucket creation.

The golden rule with circuit breaker settings is to be conservative in their values
because the caches the circuit breakers control have to share memory space with
memory buffers, the filter cache, and other Elasticsearch memory use.

AVOIDING SWAP

Operating systems use the swapping process as a method of writing memory pages to
disk. This process occurs when the amount of memory isn’t enough for the operating
system. When the swapped pages are needed by the OS, they’re loaded back in mem-
ory for use. Swapping is an expensive operation and should be avoided.

 Elasticsearch keeps a lot of runtime-necessary data and caches in memory, as
shown in figure 11.4, so expensive write and read disk operations will severely
impact a running cluster. For this reason, we’ll show how to disable swapping for
faster performance.

 The most thorough way to disable Elasticsearch swapping is to set bootstrap
.mlockall to true in the elasticsearch.yml file. Next, you need to verify that the setting

Physical memory Swap file

Swap process

Virtual memory

Elasticsearch process

Figure 11.4 Elasticsearch keeps runtime data and caches in memory, so writes
and reads can be expensive.
Licensed to Thomas Snead <n.ordickan@gmail.com>

360 CHAPTER 11 Administering your cluster
is working. Running Elasticsearch, you can either check the log for a warning or sim-
ply query for a live status:

■ Sample error in the log:

[2014-11-21 19:22:00,612][ERROR][common.jna]
Unknown mlockall error 0

■ API request:

curl -XGET 'localhost:9200/_nodes/process?pretty=1';

■ Response:

...
 "process" : {
 "refresh_interval_in_millis" : 1000,
 "id" : 9809,
 "max_file_descriptors" : 10240,
 "mlockall" : false
 } ...

If either the warning is visible in the log or the status check results in mlockall being
set to false, your settings didn’t work. Insufficient access rights on the user running
Elasticsearch are the most common reason for the new setting not taking affect. This
is normally solved by running ulimit -l unlimited from the shell as the root user. It
will be necessary to restart Elasticsearch for these new settings to be applied.

11.3.4 OS caches

Elasticsearch and Lucene leverage the OS file-system cache heavily due to Lucene’s
immutable segments. Lucene is designed to leverage the underlying OS file-system
cache for in-memory data structures. Lucene segments are stored in individual immu-
table files. Immutable files are considered to be cache-friendly, and the underlying OS
is designed to keep “hot” segments resident in memory for faster access. The end
effect is that smaller indices tend to be cached entirely in memory by your OS and
become diskless and fast.

 Because of Lucene’s heavy use of the OS file-system cache and the previous rec-
ommendation to set the JVM heap at half the physical memory, you can count on
Lucene using much of the remaining half for caching. For this simple reason, it’s
considered best practice to keep the indices that are most often used on faster
machines. The idea is that Lucene will keep hot data segments in memory for really
fast access, and this is easiest to accomplish on machines with more non-heap mem-
ory allocated. But to make this happen, you’ll need to assign specific indices to your
faster nodes using routing.

 First, you need to assign a specific attribute, tag, to all of your nodes. Every node
has a unique value assigned to the attribute tag; for instance, node.tag: mynode1 or
node.tag: mynode2. Using the node’s individual settings, you can create an index that
will deploy only on nodes that have specific tag values. Remember, the point of this
Licensed to Thomas Snead <n.ordickan@gmail.com>

361Monitoring for bottlenecks
exercise is to make sure that your new, busy index is created only on nodes with more
non-heap memory that Lucene can make good use of. To achieve this, your new
index, myindex, will now be created only on nodes that have tag set to mynode1 and
mynode2, with the following command:

curl -XPUT localhost:9200/myindex/_settings -d '{
 "index.routing.allocation.include.tag" : "mynode1,mynode2"
}'

Assuming these specific nodes have a higher non-heap memory allocation, Lucene
will cache segments in memory, resulting in a much faster response time for your
index than the alternative of having to seek segments on disk.

11.3.5 Store throttling

Apache Lucene stores its data in immutable segment files on disk. Immutable files are
by definition written only once by Lucene but read many times. Merge operations
work on these segments because many segments are read at once when a new one is
written. Although these merge operations normally don’t task a system heavily, sys-
tems with low I/O can be impacted negatively when merges, indexing, and search
operations are all occurring at the same time. Fortunately, Elasticsearch provides
throttling features to help control how much I/O is used.

 You can configure throttling at both the node level and the index level. At the
node level, throttling configuration settings affect the entire node, but at the index
level, throttling configuration takes effect only on the indices specified.

 Node-level throttling is configured by use of the indices.store.throre.throt-
tle.type property with possible values of none, merge, and all. The merge value
instructs Elasticsearch to throttle I/O for merging operations across the entire node,
meaning every shard on that node. The all value will apply the throttle limits to all
operations for all of the shards on the node. Index-level throttling is configured much
the same way but uses the index.store.throttle.type property instead. Addition-
ally, it allows for a node value to be set, which means it will apply the throttling limits to
the entire node.

 Whether you’re looking to implement node- or index-level throttling, Elastic-
search provides a property for setting the maximum bytes per second that I/O will use.
For node-level throttling, use indices.store.throttle.max_bytes_per_sec, and for
index-level throttling, use index.store.throttle.max_bytes_per_sec. Note that the
values are expressed in megabytes per second:

indices.store.throttle.max_bytes_per_sec : "50mb"

or

index.store.throttle.max_bytes_per_sec : "10mb"

We leave as an exercise for you to configure the correct values for your particular sys-
tem. If the frequency of I/O wait on a system is high or performance is degrading, low-
ering these values may help ease some of the pain.
Licensed to Thomas Snead <n.ordickan@gmail.com>

362 CHAPTER 11 Administering your cluster
 Although we’ve explored ways to curtail a disaster, the next section will look at how
to back up and restore data from/to your cluster in the event of one.

11.4 Backing up your data
Elasticsearch provides a full-featured and incremental data backup solution. The snap-
shot and restore APIs enable you to back up individual index data, all of your indices,
and even cluster settings to either a remote repository or other pluggable backend sys-
tems and then easily restore these items to the existing cluster or a new one.

 The typical use case for creating snapshots is, of course, to perform backups for
disaster recovery, but you may also find it useful in replicating production data in
development or testing environments and even as insurance before executing a large
set of changes.

11.4.1 Snapshot API

Using the snapshot API to back up your data for the first time, Elasticsearch will take a
copy of the state and data of your cluster. All subsequent snapshots will contain the
changes from the previous one. The snapshot process is nonblocking, so executing it
on a running system should have no visible effect on performance. Furthermore,
because every subsequent snapshot is the delta from the previous one, it makes for
smaller and faster snapshots over time.

 It’s important to note that snapshots are stored in repositories. A repository can be
defined as either a file system or a URL.

■ A file-system repository requires a shared file system, and that shared file system
must be mounted on every node in the cluster.

■ URL repositories are read-only and can be used as an alternative way to access
snapshots.

In this section, we’ll cover the more common and flexible file-system repository types,
how to store snapshots in them, restoring from them, and leveraging common plugins
for cloud vendor storage repositories.

11.4.2 Backing up data to a shared file system

Performing a cluster backup entails executing three steps that we’ll cover in detail:

■ Define a repository—Instruct Elasticsearch on how you want the repository
structured.

■ Confirm the existence of the repository—You want to trust but verify that the reposi-
tory was created using your definition.

■ Execute the backup—Your first snapshot is executed via a simple REST API
command.

The first step in enabling snapshots requires you to define a shared file-system reposi-
tory. The curl command in the following listing defines your new repository on a net-
work mounted drive.
Licensed to Thomas Snead <n.ordickan@gmail.com>

363Backing up your data

The
of

repos
my_repos

D

re
as
file
curl -XPUT 'localhost:9200/_snapshot/my_repository' -d '
{
 "type": "fs",
 "settings": {
 "location": "smb://share/backups",
 "compress" : true,
 "max_snapshot_bytes_per_sec" : "20mb",
 "max_restore_bytes_per_sec" : "20mb"
 }
}';

Once the repository has been defined across your cluster, you can confirm its exis-
tence with a simple GET command:

curl -XGET 'localhost:9200/_snapshot/my_repository?pretty=1';
{
 "my_repository" : {
 "type" : "fs",
 "settings" : {
 "compress" : "true",
 "max_restore_bytes_per_sec" : "20mb",
 "location" : "smb://share/backups",
 "max_snapshot_bytes_per_sec" : "20mb"
 }
 }
}

Note that as a default action, you don’t have to specify the repository name, and Elas-
ticsearch will respond with all registered repositories for the cluster:

curl -XGET 'localhost:9200/_snapshot?pretty=1';

Once you’ve established a repository for your cluster, you can go ahead and create
your initial snapshot/backup:

curl -XPUT 'localhost:9200/_snapshot/my_repository/first_snapshot';

This command will trigger a snapshot operation and return immediately. If you want
to wait until the snapshot is complete before the request responds, you can append
the optional wait_for_completion flag:

curl -XPUT 'localhost:9200/_snapshot/my_repository/
first_snapshot?wait_for_completion=true';

Now take a look at your repository location and see what the snapshot command
stored away:

./backups/index

./backups/indices/bitbucket/0/__0

./backups/indices/bitbucket/0/__1

Listing 11.4 Defining a new repository

name
 your
itory:
itory

efine the
type of

pository
a shared
 system.

The network location
of your repository

Defaults to true;
compresses
metadata, not the
actual data files

Per-second transfer
rate on snapshots

Per-second trader
rate on restoration
Licensed to Thomas Snead <n.ordickan@gmail.com>

364 CHAPTER 11 Administering your cluster
./backups/indices/bitbucket/0/__10

./backups/indices/bitbucket/1/__c

./backups/indices/bitbucket/1/__d

./backups/indices/bitbucket/1/snapshot-first_snapshot
…
./backups/indices/bitbucket/snapshot-first_snapshot
./backups/metadata-first_snapshot
./backups/snapshot-first_snapshot

From this list, you can see a pattern emerging on what Elasticsearch backed up. The
snapshot contains information for every index, shard, segment, and accompanying
metadata for your cluster with the following file path structure: /<index_name>/
<shard_number>/<segment_id>. A sample snapshot file may look similar to the fol-
lowing, which contains information about size, Lucene segment, and the files that
each snapshot points to within the directory structure:

smb://share/backups/indices/bitbucket/0/snapshot-first_snapshot
{
 "name" : "first_snapshot",
 "index_version" : 18,
 "start_time" : 1416687343604,
 "time" : 11,
 "number_of_files" : 20,
 "total_size" : 161589,
 "files" : [{
 "name" : "__0",
 "physical_name" : "_l.fnm",
 "length" : 2703,
 "checksum" : "1ot813j",
 "written_by" : "LUCENE_4_9"
 }, {
 "name" : "__1",
 "physical_name" : "_l_Lucene49_0.dvm",
 "length" : 90,
 "checksum" : "1h6yhga",
 "written_by" : "LUCENE_4_9"
 }, {
 "name" : "__2",
 "physical_name" : "_l.si",
 "length" : 444,
 "checksum" : "afusmz",
 "written_by" : "LUCENE_4_9"
 }

SECOND SNAPSHOT

Because snapshots are incremental, only storing the delta between them, a second
snapshot command will create a few more data files but won’t recreate the entire snap-
shot from scratch:

curl -XPUT 'localhost:9200/_snapshot/my_repository/second_snapshot';
Licensed to Thomas Snead <n.ordickan@gmail.com>

365Backing up your data
Analyzing the new directory structure, you can see that only one file was modified:
the existing /index file in the root directory. Its contents now hold a list of the snap-
shots taken:

{"snapshots":["first_snapshot","second_snapshot"]}

SNAPSHOTS ON A PER-INDEX BASIS

In the previous example, you saw how you can take snapshots of the entire cluster and
all indices. It’s important to note here that snapshots can be taken on a per-index
basis, by specifying the index in the PUT command:

curl -XPUT 'localhost:9200/_snapshot/my_repository/third_snapshot' -d '
{
 "indices": "logs-2014,logs-2013"
};

Retrieving basic information on the state of a given snapshot (or all snapshots) is
achieved by using the same endpoint, with a GET request:

curl -XGET 'localhost:9200/_snapshot/my_repository/first_snapshot?pretty';

The response contains which indices were part of this snapshot and the total duration
of the entire snapshot operation:

{
 "snapshots": [
 {
 "snapshot": "first_snapshot",
 "indices": [
 "bitbucket"
],
 "state": "SUCCESS",
 "start_time": "2014-11-02T22:38:14.078Z",
 "start_time_in_millis": 1414967894078,
 "end_time": "2014-11-02T22:38:14.129Z",
 "end_time_in_millis": 1414967894129,
 "duration_in_millis": 51,
 "failures": [],
 "shards": {
 "total": 10,
 "failed": 0,
 "successful": 10
 }
 }
]
}

Substituting the snapshot name for _all will supply you with information regarding
all snapshots in the repository:

curl -XGET 'localhost:9200/_snapshot/my_repository/_all';

Comma-separated list of
index names to snapshot
Licensed to Thomas Snead <n.ordickan@gmail.com>

366 CHAPTER 11 Administering your cluster
Because snapshots are incremental, you must take special care when removing old
snapshots that you no longer need. It’s always advised that you use the snapshot API
in removing old snapshots because the API will delete only currently unused seg-
ments of data:

curl -XDELETE 'localhost:9200/_snapshot/my_repository/first_snapshot';

Now that you have a solid understanding of the options available when backing up
your cluster, let’s have a look at restoring your cluster data and state from these snap-
shots, which you’ll need to understand in the event of a disaster.

11.4.3 Restoring from backups

Snapshots are easily restored to any running cluster, even a cluster the snapshot didn’t
originate from. Using the snapshot API with an added _restore command, you can
restore the entire cluster state:

curl -XPOST 'localhost:9200/_snapshot/my_repository/first_snapshot/_restore';

This command will restore the data and state of the cluster captured in the given
snapshots: first_snapshot. With this operation, you can easily restore the cluster to
any point in time you choose.

 Similar to what you saw before with the snapshot operation, the restore operation
allows for a wait_for_completion flag, which will block the HTTP call you make until
the restore operation is fully complete. By default, the restore HTTP request returns
immediately, and the operation executes in the background:

curl -XPOST 'localhost:9200/_snapshot/my_repository/first_snapshot/
_restore?wait_for_completion=true';

Restore operations also have additional options available that allow you to restore an
index to a newly named index space. This is useful if you want to duplicate an index or
verify the contents of a restored index from backup:

curl -XPOST 'localhost:9200/_snapshot/my_repository/first_snapshot/_restore'
-d '
{
 "indices": "logs_2014",
 "rename_pattern": "logs_(.+)",
 "rename_replacement": "a_copy_of_logs_$1"
}';

Given this command, you’ll restore only the index named logs_2014 from the snap-
shot and ignore restoring any other indices found in the snapshot. Because the index
name matches the pattern you defined as the rename_pattern, the snapshot data will
reside in a new index named a_copy_of_logs_2014.

The index or indices you’ll
restore from the snapshot

Pattern match
for index names
to replaceRename the

matched indices
Licensed to Thomas Snead <n.ordickan@gmail.com>

367Backing up your data

rep

Bu
m

NOTE When restoring an existing index, the running instance of the index
must be closed. Upon completion, the restore operation will open the closed
indices.

Now that you understand how the snapshot API works to enable backups in a network-
attached-storage environment, let’s explore some of the many plugins available for
performing backups in a cloud-based vendor environment.

11.4.4 Using repository plugins

Although snapshotting and restoring from a shared file system is a common use case,
Elasticsearch and the community also provide repository plugins for several of the
major cloud vendors. These plugins allow you to define repositories that use a specific
vendor’s infrastructure requirements and internal APIs.

AMAZON S3
For those deploying on an Amazon Web Services infrastructure, there’s a freely available
S3 repository plugin available on GitHub and maintained by the Elasticsearch team:
https://github.com/elasticsearch/elasticsearch-cloud-aws#s3-repository.

 The Amazon S3 repository plugin has a few configuration variables that differ from
the norm, so it’s important to understand what functionality each of them controls.
An S3 repository can be created as such:

curl -XPUT 'localhost:9200/_snapshot/my_s3_repository' -d '{
 "type": "s3",
 "settings": {
 "bucket": "my_bucket_name",
 "base_path" : "/backups",
 "access_key" : "THISISMYACCESSKEY",
 "secret_key" : "THISISMYSECRETKEY",
 "max_retries" : "5",
 "region": "us-west"
 }
}'

Once enabled, the S3 plugin will store your snapshots in the defined bucket path.
Because HDFS is compatible with Amazon S3, you may be interested in reading the
next section, which covers the Hadoop HDFS repository plugin, as well.

HADOOP HDFS
The HDFS file system can be used as a snapshot/restore repository with this simple
plugin, built and maintained by the Elasticsearch team that’s part of the more general
Hadoop plugin project: https://github.com/elasticsearch/elasticsearch-hadoop/tree/
master/repository-hdfs.

 You must install the latest stable release of this plugin on your Elasticsearch cluster.
From the plugin directory, use the following command to install the desired version of
the plugin directly from GitHub:

bin/plugin -i elasticsearch/elasticsearch-repository-hdfs/2.x.y

Type of
ository

cket name is
andatory and
maps to your

S3 bucket

Directory path within S3 bucket
to store repository data

Defaults to
cloud.aws.access_key

Defaults to
cloud.aws.secret_key

Maximum number of retry
attempts on S3 errors

Amazon region where
the bucket is located
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elasticsearch/elasticsearch-cloud-aws#s3-repository
https://github.com/elasticsearch/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elasticsearch/elasticsearch-hadoop/tree/master/repository-hdfs

368 CHAPTER 11 Administering your cluster
Once it’s installed, it’s time to configure the plugin. The HDFS repository plugin con-
figuration values should be placed within your elasticsearch.yml configuration file.
Here are some of the important values:

repositories
 hdfs:
 uri: "hdfs://<host>:<port>/"
 path: "some/path"
 load_defaults: "true"
 conf_location: "extra-cfg.xml"
 conf.<key> : "<value>"

Now, with your HDFS repository plugin configured, your snapshot and restore opera-
tions will execute using the same snapshot API as covered earlier. The only difference
is that the method of snapshotting and restoring will be from your Hadoop file system.

 In this section we explored various ways to back up and restore cluster data and state
using the snapshot API. Repository plugins provide a convenience for those deploying
Elasticsearch with public cloud vendors. The snapshot API provides a simple and auto-
mated way to store backups in a networked environment for disaster recovery.

11.5 Summary
We’ve covered a lot of information in this chapter, with the main focus being adminis-
tration and optimization of your Elasticsearch cluster. Now that you have a firm under-
standing of these concepts, let’s recap:

■ Index templates enable autocreation of indices that share common settings.
■ Default mappings are convenient for the repetitive tasks of creating similar

mappings across indices.
■ Aliases allow you to query across many indices with a single name, thereby

allowing you to keep your data segmented if needed.
■ The cluster health API provides a simple way to gauge the general health of

your cluster, nodes, and shards.
■ Use the slow index and slow query logs to help diagnose index and query oper-

ations that can be affecting the performance of the cluster.
■ Armed with a solid understanding of how the JVM, Lucene, and Elasticsearch

allocate and use memory, you can prevent the operating system from swapping
processes to disk.

■ The snapshot API provides a convenient way to back up and restore your cluster
with network-attached storage. Repository plugins expand this functionality to
public cloud vendors.

URI to the Hadoop
file system

Path to where the
snapshots are stored

Allows loading the Hadoop
default configurations

Name of the Hadoop
configuration XML file

Keys/values that can be
added to the Hadoop

configuration file
Licensed to Thomas Snead <n.ordickan@gmail.com>

appendix A
Working with

geospatial data

Geospatial data makes your search application location-aware. For example, to
search for events that are close to you, to find restaurants in a certain area, or to see
which park’s area intersects with the area of the city center, you’d work with geospa-
tial data.

 We’ll call events and restaurants in this context points because they’re essentially
points on the map. We’ll put areas, such as a country or a rectangle that you draw
on a map, under the generic umbrella of shapes. Geospatial search works with
points, shapes, and various relations between them:

■ Distance between a point and another point—If where you are is a point and
swimming pools are other points, you can search for the closest swimming
pools. Or you can filter only pools that are reasonably close to you, or use
aggregations to see how many of them are within 10 km, how many are
between 10 and 20 km, and so on.

■ A shape containing a point—If you select an area on the map, like the area
where you work, you can filter only restaurants that are in that area, or you
can use the geo_bounds aggregation to find out which area a set of points
belongs in.

■ A shape overlapping with another shape—For example, you can search for parks
in the city center.

This appendix will show you how to search, sort, and aggregate documents in Elas-
ticsearch, based on their distance from a reference point on the map. You’ll also
learn how to search for points that fall into a rectangle and how to search shapes
that intersect with a certain area you define on the map.
369

Licensed to Thomas Snead <n.ordickan@gmail.com>

370 APPENDIX A Working with geospatial data
A.1 Points and distances between them
To search for points, you first have to index them. Elasticsearch has a geo point type
especially for that. You can see an example of how to use it in the code samples by
looking at mapping.json.

NOTE The code samples for this book, along with instructions on how to use
them, can be found at https://github.com/dakrone/elasticsearch-in-action.

Each event has a location field, which is an object that includes the geolocation
field as a geo_point type:

"geolocation" : { "type" : "geo_point"}

With the geo point type defined in your mapping, you can index points by giving the
latitude and longitude, as you can see in populate.sh:

"geolocation": "39.748477,-104.998852"

TIP You can also provide the latitude and longitude as properties, an array,
or a geohash. This doesn’t change the way points are indexed; it’s just for
your convenience, in case you have a preferred way. You can find more details
at www.elastic.co/guide/en/elasticsearch/reference/current/mapping-geo-
point-type.html.

Having geo points indexed as part of your event documents (from the dataset used
throughout the book) enables you to add distance criteria to your searches in the fol-
lowing ways:

■ Sort results by the distance from a given point—This makes the event closest to you
appear first.

■ Filter results by distance—This lets you display only events that are within a certain
range—for example, 100 kilometers from you.

■ Aggregate results by distance—This allows you to create buckets of ranges. For
example, you can get the number of events within 100 km from you, the num-
ber of events from 100 km to 200 km, and so on.

A.2 Adding distance to your sort criteria
Using the get-together example from the main chapters of the book, let’s say your
coordinates are 40,–105 and you need to find the event about Elasticsearch closest to
you. To do that, you need to add a sort criteria called _geo_distance, where you spec-
ify your current location, as shown in the following listing.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html

371Adding distance to your sort criteria
curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "sort" : [
 {
 "_geo_distance" : {
 "location.geolocation" : "40,-105",
 "order" : "asc",
 "unit" : "km"
 }
 }
]
}'

You can also specify an array of multiple reference points and use mode to decide
whether the sort value will be the mim/max/avg distance between the reference points
and the point stored in the document:

 "_geo_distance" : {
 "location.geolocation" : ["40,-105", "42,-107"],
 "order" : "asc",
 "unit" : "km",
 "mode" : "avg"

This is useful, for example, when you have multiple points of interest and you want to
find a hotel that’s close to all of them.

A.2.1 Sorting by distance and other criteria at the same time

A search like the previous one is useful when distance is your only criteria. If you want
to include other criteria in the equation, such as the document’s score, you can use
the function_score query that we introduced in chapter 6. This way, you can gener-
ate a final score based on the initial score from your query plus the distance from your
point of interest.

 The following listing shows such a query: an event will score linearly lower the far-
ther it is from you. At 100 km, the original score would be cut by half (decay=0.5).

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "function_score": {
 "query": {
 "match": {
 "title": "elasticsearch"
 }

Listing A.1 Sorting events by distance

Listing A.2 Taking distance into account when calculating the score

The query looking
for “elasticsearch”
in the title

The _geo_distance
sort criteria

Your current
location

Ascending order will give
closest events first.

Each hit will
have a sort value
representing the
distance from
your location in
kilometers.

Query looking for
“elasticsearch”
returns a score
Licensed to Thomas Snead <n.ordickan@gmail.com>

372 APPENDIX A Working with geospatial data
 },
 "linear": {
 "location.geolocation": {
 "origin": "40, -105",
 "scale": "100km",
 "decay": 0.5
 }
 }
 }
 }
}'

You might be tempted to think that such scripts bring the best of both worlds: rele-
vance from your query and the geospatial dimension. Although the function_score
query is very powerful indeed, running it as shown in listing A.2 is expensive in terms
of speed, especially when you have lots of documents, because it has to calculate the
distance from origin of all matching documents. A faster way could be to search your
events as usual and filter only those that are within a certain distance.

A.3 Filter and aggregate based on distance
Let’s say you’re looking for events within a certain range from where you are, as in
figure A.1.

linear decay function
reduces an event’s
score the farther it is
from origin

Figure A.1 You can filter only points that fall in a certain range from a specified location.
Licensed to Thomas Snead <n.ordickan@gmail.com>

373Filter and aggregate based on distance
To filter such events, you’d use the geo distance filter. The parameters it needs are
your reference location and the limiting distance, as shown here:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_distance": {
 "distance": "50km",
 "location.geolocation": "40.0,-105.0"
 }
 }
 }
 }
}'

In this default mode, Elasticsearch will calculate the distance from 40.0,–105.0 to each
event’s geolocation and return only those that are under 50 km. You can set the way
the distance is calculated via the distance_type parameter, which will go next to the
distance parameter. You have three options:

■ sloppy_arc (default)—It calculates the distance between the two points by
doing a faster approximation of an arc of a circle. This is a good option for
most situations.

■ arc—It actually calculates the arc of a circle, making it slower but more precise
than sloppy_arc. Note that you don’t get 100% precision here, either, because
the Earth isn’t perfectly round. Still, if you need precision, this is the best option.

■ plane—This is the fastest but least precise implementation because it assumes
the surface between the two points is a plane. This option works well when you
have many documents and the distance limit is fairly small.

Performance optimization doesn’t end with distance algorithms. There’s another
parameter to the geo distance filter called optimize_bbox. bbox stands for bounding
box, which is a rectangle that you define on a map that contains all the points and
areas of interest.

 Using optimize,_bbox will first check if events match a square that contains the cir-
cle describing the distance range. If they match, Elasticsearch filters further by calcu-
lating the distance.

 If you’re asking yourself whether the bounding box optimization is actually worth it,
you’ll be happy to know that for most cases, it is. Verifying whether a point belongs to a
bounding box is much faster than calculating the distance and comparing it to your limit.

 It’s also configurable. You can set optimize_bbox to none and check whether your
query times are faster or slower. The default value is memory and you can set it to indexed.

 Are you curious about what the difference between memory and indexed is? We’ll
discuss this difference in the beginning of the next section. If you’re not curious and
you don’t want to obsess about performance improvements, sticking with the default
should be good enough for most cases.
Licensed to Thomas Snead <n.ordickan@gmail.com>

374 APPENDIX A Working with geospatial data
DISTANCE RANGE FILTER

The geo distance range filter allows you, for example, to search for events between
50 and 100 kilometers from where you are. Besides its from and to distance options, it
accepts the same parameters as the geo distance filter:

 "filter": {
 "geo_distance_range": {
 "from": "50km",
 "to": "100km",
 "location.geolocation": "40.0,-105.0"
 }
 }

DISTANCE RANGE AGGREGATION

Users will probably search for events farther from their point of reference because the
ones they found close by weren’t satisfying—for example, if the events’ dates are too
far in the future. In such situations, it might be handy for the user to see in advance
how many events are, say, within 50 km, between 50 and 100, between 100 and 200,
and so on.

 For this use case, the geo distance range aggregation will come in handy. It looks
similar to the range and date range aggregations you saw in chapter 7. In this case,
you’ll specify a reference point (origin) and the distance ranges you need:

 "aggs" : {
 "events_ranges" : {
 "geo_distance" : {
 "field" : "location.geolocation",
 "origin" : "40.0, -105.0",
 "unit": "km",
 "ranges" : [
 { "to" : 100 },
 { "from" : 100, "to" : 5000 },
 { "from" : 5000 }
]
 }
 }
 }

Elasticsearch will return how many events it finds for each distance range:

 "aggregations" : {
 "events_ranges" : {
 "buckets" : [{
 "key" : "*-100.0",
 "from" : 0.0,
 "to" : 100.0,
 "doc_count" : 8
 }, {
 "key" : "100.0-5000.0",
 "from" : 100.0,
 "to" : 5000.0,
 "doc_count" : 3
 }, {
Licensed to Thomas Snead <n.ordickan@gmail.com>

375Does a point belong to a shape?
 "key" : "5000.0-*",
 "from" : 5000.0,
 "doc_count" : 3
 }]
 }
 }

So far we’ve covered how to search and aggregate points based on distances. Next,
we’ll look at searching and aggregating them based on shapes.

A.4 Does a point belong to a shape?
Shapes, especially rectangles, are easy to draw interactively on a map, as you can see in
figure A.2. It’s also faster to search for points in a shape than to calculate distances
because searching in a shape only requires comparing the coordinates of the point
with the coordinates of the shape’s corners.

 There are three types of shapes on the map that you can match points to, or you
can match points to events if you’re thinking of the get-together example we used
throughout the chapters:

■ Bounding boxes (rectangles)—These are fast and give you the flexibility to draw
any rectangle.

■ Polygons—These allow you to draw a more precise shape, but it’s difficult to
ask a user to draw a polygon, and the more complex the polygon is, the slower
the search.

■ Geohashes (squares defined by a hash)—These are the least flexible because hashes
are fixed. But, as you’ll see later, they’re typically the fastest implementation of
the three.

Figure A.2 You can filter points based on whether they fall within a rectangle on the map.
Licensed to Thomas Snead <n.ordickan@gmail.com>

376 APPENDIX A Working with geospatial data
A.4.1 Bounding boxes

To search whether a point falls within a rectangle, you’d use the bounding box filter.
This is useful if your application allows users to click a point on the map to define a
corner of the rectangle and then click again to define the opposite corner. The result
could be a rectangle like the one from figure A.2.

 To run the bounding box filter, specify the coordinates for the top-left and bottom-
right points that describe the rectangle:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_bounding_box": {
 "location.geolocation": {
 "top_left": "40, -106",
 "bottom_right": "38, -103"
 }
 }
 }
 }
 }
}'

The default implementation of the bounding box filter is to load the points’ coordi-
nates in memory and compare them with those provided for the bounding box. This
is the equivalent of setting the type option under geo_bounding_box to memory.

 Alternatively, you can set type to indexed and Elasticsearch will do the same com-
parison using range filters, like the ones you learned about in chapter 4. For this
implementation to work, you need to index the point’s latitude and longitude in their
own fields, which aren’t enabled by default.

 To enable indexing latitude and longitude separately, you have to set lat_lon to
true in your mapping, making your geolocation field definition look like this:

"geolocation" : { "type" : "geo_point", "lat_lon": true }

NOTE If you make this change to mapping.json from the code samples, you’ll
need to run populate.sh again to re-index the sample dataset and have your
changes take effect.

The indexed implementation is faster, but indexing latitude and longitude will make
your index bigger. Also, if you have more geo points per document—such as an array
of points for a restaurant franchise—the indexed implementation won’t work.

Licensed to Thomas Snead <n.ordickan@gmail.com>

377Does a point belong to a shape?
If you use the geo bounding box filter to search for documents that fall in an area, you
can use the geo bounds aggregation to do the opposite—get the bounding box that
includes all points resulting from your search:

 "aggs" : {
 "events_box": {
 "geo_bounds": {
 "field": "location.geolocation"
 }
 }
 }
returns
 "aggregations" : {
 "events_box" : {
 "bounds" : {
 "top_left" : {
 "lat" : 51.524806,
 "lon" : -122.399801
 },
 "bottom_right" : {
 "lat" : 37.787742,
 "lon" : -0.099095
 }
 }
 }
 }

A.4.2 Geohashes

The last point-matches-shape method you can use is matching geohash cells. Geohash,
which is a system invented by Gustavo Niemeyer when building geohash.org,1 works as
suggested in figure A.3, which is a screenshot from http://geohash.gofreerange.com.
The Earth is divided into 32 rectangles/cells. Each cell is identified by an alpha-
numeric character, its hash. Then each rectangle—for example, d—can be further
divided into 32 rectangles of its own, generating d0, d1, and so on. You can repeat the
process virtually forever, generating smaller and smaller rectangles with longer and
longer hash values.

Polygon filter
If you want to search for points matching a more complex shape than a rectangle,
you can use the geo polygon filter. It allows you to enter the array of points that
describe the polygon. More details about the geo polygon filter can be found here:
www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-geo-polygon-
filter.html.

1 https://en.wikipedia.org/wiki/Geohash
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://geohash.org
https://en.wikipedia.org/wiki/Geohash
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-polygon-filter.html
http://geohash.gofreerange.com

378 APPENDIX A Working with geospatial data
GEOHASH CELL FILTER

Because of the way geohash cells are defined, each point on the map belongs to an
infinite number of such geohash cells, like d, d0, d0b, and so on. Given such a cell,
Elasticsearch can tell you which points match with the geohash cell filter:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geohash_cell": {
 "location.geolocation": "9xj"
 }
 }
 }
 }
}'

Figure A.3 The world divided in 32 letter-coded cells. Each cell is divided into 32 cells and
so on, making longer hashes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

379Does a point belong to a shape?
Even though a geohash cell is a rectangle, this filter works differently than the bound-
ing box filter. First, geo points have to get indexed with a geohash that describes
them—for example, 9xj6. Then, you also have to index all the ngrams of that hash,
like 9, 9x, 9xj, and 9xj6, which describe all the parent cells. When you run the filter,
the hash from the query is matched against the hashes indexed for that point, making
a geohash cell filter similar in implementation to the term filter you saw in chapter 4,
which is very fast.

 To enable indexing the geohash in your geo point, you have to set geohash to true
in the mapping. To index that hash’s parents (edge ngrams), set geohash_prefix to
true, as well. Indexing prefixes will help make filters faster because they’ll do an exact
match on the prefixes already indexed instead of a more expensive wildcard search.

TIP Because a cell will never be able to perfectly describe a point, you have
to choose how precise (or big) that rectangle needs to be. The default setting
for precision is 12, which creates hashes like 9xj64sswpkdq with an accuracy
of a few centimeters. Because you’ll also index all the parents, you may want
to trade some precision for index size and search performance. You can also
specify the precision as length (like 10m), and Elasticsearch will set the corre-
sponding numeric value.

GEOHASH GRID AGGREGATION

Just as you can do aggregations with distances, you can cluster documents that match
your search by the geohash cells they belong to. The size of these geohash cells is con-
figured through the precision option:

 "aggs" : {
 "events_clusters": {
 "geohash_grid": {
 "field": "location.geolocation",
 "precision": 5
 }
 }
 }

This would return buckets like these:

 "events_clusters" : {
 "buckets" : [{
 "key" : "9xj64",
 "doc_count" : 6
 }, {
 "key" : "gcpvj",
 "doc_count" : 3
...

Understanding geohash cells is important even if you’re not going to use the geohash
filters and aggregations because in Elasticsearch, geohashes are the default way of rep-
resenting shapes. We’ll explain how shapes use geohashes in the next section.
Licensed to Thomas Snead <n.ordickan@gmail.com>

380 APPENDIX A Working with geospatial data
A.5 Shape intersections
Elasticsearch can index documents with shapes, such as polygons showing the area of
a park, and filter documents based on whether parks overlap other shapes, such as the
city center. It does this by default through the geohashes discussed in the previous sec-
tion. The process is described in figure A.4: each shape is approximated (we’ll discuss
precision later) to a group of rectangles defined by geohashes. When you search, Elas-
ticsearch will easily find out if at least one geohash of a certain shape overlaps a geo-
hash of another shape.

A.5.1 Indexing shapes

Let’s say you have a shape of a park that’s a polygon with four corners. To index it,
you’d first have to define a mapping of that shape field—let’s call it area—of type
geo_shape. With the mapping in place, you can start indexing documents: the area
field of each document would have to mention that the shape’s type is polygon and
show the array of coordinates for that polygon, as shown in the next listing.

curl -XPUT localhost:9200/geo
curl -XPUT localhost:9200/geo/_mapping/park -d '
 "properties": {
 "area": { "type": "geo_shape"}
 }
}'

Listing A.3 Indexing a shape

Shape 1

Shape 3

Shape 2

Overlapping

area

Figure A.4 Shapes represented in geohashes. Searching for shapes matching shape 1 will return
shape 2.

Creating a new index to
index the park areas

Put the mapping for
parks. geo-shapes
will be indexed in
the area field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

381Shape intersections
curl -XPUT localhost:9200/geo/park/1 -d '{
 "area": {
 "type": "polygon",
 "coordinates": [
 [[45, 30], [46, 30], [45, 31], [46, 32]]
]
 }
}'

NOTE Polygons aren’t the only shape type Elasticsearch supports. You can
have multiple polygons in a single shape (type: multipolygon). There are also
the point and multipoint types, one or more chained lines (linestring,
multilinestring), rectangles (envelope), and more. You can find the com-
plete list here: www.elastic.co/guide/en/elasticsearch/reference/current/
mapping-geo-shape-type.html.

The amount of space a shape occupies in your index depends heavily on how you
index it. Because geohashes can only approximate most shapes, it’s up to you to
define how small those geohash rectangles can be. The smaller they are, the better the
resolution/approximation, but your index size increases because smaller geohash
cells have longer strings and—more importantly—more parent ngrams to index as
well. Depending on where you are in this tradeoff, you’ll specify a precision parame-
ter in your mapping, which defaults to 50m. This means the worst-case scenario is to
get an error of 50m.

A.5.2 Filtering overlapping shapes

With your park documents indexed, let’s say you have another four-cornered shape
that represents your city center. To see which parks are at least partly in the city center,
you’d use the geo shape filter. You can provide the shape definition of your city center
in the filter, as shown in the following listing.

curl localhost:9200/geo/park/_search?pretty -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_shape": {
 "area": {
 "shape": {
 "type": "polygon",
 "coordinates": [
 [[45, 30.5], [46, 30.5], [45, 31.5], [46, 32.5]]
]
 }
 }
 }

Listing A.4 geo shape filter example

A polygon is indexed
in the area field.

Coordinates for
the polygon

This first array describes the outer
boundary. Optionally, other arrays can be

added to define holes in the polygon.

Field to be
searched on

You’ll provide a
shape in the query.

Shape provided
in the same way
as when you
index
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-geo-shape-type.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-geo-shape-type.html

382 APPENDIX A Working with geospatial data
 }
 }
 }
}'

If you followed listing A.3, you should see that the indexed shape matches. Change
the query to something like [[95, 30.5], [96, 30.5], [95, 31.5], [96, 32.5]],
and the query won’t return any hits because there’s no common geohash to trigger
an overlap.

 Geohashes are powerful because they provide a way to do geospatial search using
the same underlying mechanisms as the term queries we discussed throughout the
book. Although geohashes are only an approximation of a point or a shape, using
them is typically faster than doing calculations or range filtering on raw latitude and
longitude numbers, as you saw in the first part of the appendix.
Licensed to Thomas Snead <n.ordickan@gmail.com>

appendix B
Plugins

Plugins are a powerful way to extend or enhance the functionality that Elastic-
search provides out of the box. A default installation of Elasticsearch comes with no
plugins installed, but many are available on GitHub for you to download and play
around with.

 This appendix shows you how to install, access, and manage plugins in
Elasticsearch.

B.1 Working with plugins
Plugins are split into two categories: site plugins and code plugins. A site plugin is
one that provides no additional functionality; it simply provides a web page served
by Elasticsearch. Some examples of site plugins are the elasticsearch-head plugin,
elasticsearch-kopf, bigdesk, elasticsearch-hq, and whatson. For example, you
may remember the screenshot from chapter 2 shown in figure B.1, showing shards
allocated on two different nodes on the kopf plugin.

Figure B.1 Example
of the kopf plugin
383

Licensed to Thomas Snead <n.ordickan@gmail.com>

384 APPENDIX B Plugins
You can see in the figure that the kopf plugin shows information about the Elastic-
search cluster; Elasticsearch isn’t running any different code and hasn’t had any
behavior on the server changed at all. The alternative to this is a code plugin.

 A code plugin is any plugin that includes JVM code that Elasticsearch executes; this
can include plugins that add features to Elasticsearch such as the AWS plugin, used to
add the ability to snapshot indices to Amazon S3, as well as plugins like the ICU analy-
sis plugin, which is used to better handle language-specific characteristics of text dur-
ing analysis. There are even plugins that replace internal parts of Elasticsearch such as
the shard distributor and discovery mechanisms.

 Some examples of code plugins are the elasticsearch-aws and elasticsearch-
azure plugins and the multiple elasticsearch-lang-* plugins such as elastic-
search-lang-python and elasticsearch-lang-ruby that add support for additional
scripting languages. There are also plugins that add query capabilities such as addi-
tional highlighters and new types of aggregations. Because a code plugin is just a .jar
file, it can add any kind of functionality that a developer can think of to Elasticsearch.

 Although we said that plugins were split into two categories, that isn’t entirely
true. It’s possible for a code plugin to also include basic HTML, image, and Java-
Script files that Elasticsearch can serve to provide an interface as well. An example of
a plugin like this is the elasticsearch-marvel plugin (www.elastic.co/products/
marvel/), which includes Java code that collects and stores metrics, as well as the site
portion, which includes an interface to display analytic information about data in
Elasticsearch.

 Now that we’ve covered the two different types of Elasticsearch plugins, let’s talk
about how to install and start using them.

B.2 Installing plugins
In order to use a plugin, you first need to install it. Plugins come in many forms, but
they’re most frequently .zip files. You can choose to manually extract a .zip file to the
plugins directory, or you can use the bin/plugin tool to install it by downloading it
either from the internet or from a local zip file.

 You’ll start by installing the elasticsearch-head plugin, as shown in the following
listing. You can find the plugin here: https://mobz.github.io/elasticsearch-head/.
You’ll install it using the built-in plugin shell script that comes with Elasticsearch. On
Windows, you can use the plugin.bat script to install plugins.

$ cd /path/to/elasticsearch
$ ls
LICENSE.txt NOTICE.txt README.textile bin config lib logs
$ bin/plugin -install mobz/elasticsearch-head
-> Installing mobz/elasticsearch-head...
Trying https://github.com/mobz/elasticsearch-head/archive/master.zip...

Listing B.1 Installing the elasticsearch-head plugin

Installing the
plugin with the
bin/plugin script
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/products/marvel/
http://www.elastic.co/products/marvel/
https://mobz.github.io/elasticsearch-head/

385Installing plugins
Downloading ..DONE
Installed mobz/elasticsearch-head into /data/elasticsearch-1.5.1/plugins/head
Identified as a _site plugin, moving to _site structure ...

Here you can see that the plugin script has downloaded the plugin from github.com
and installed the elasticsearch-head plugin into the plugins/head directory. It also
has detected that the plugin is a site plugin.

 You can list plugins that have been installed by using the -l or --list parameters
to the plugin script, as shown in the next listing.

$ bin/plugin --list
Installed plugins:
 - head

In this case, you install a site plugin that was automatically downloaded from GitHub,
but there are also other ways to install plugins. Running the bin/plugin script without
any parameters shows you all of the options available. See the next listing.

$ bin/plugin
Usage:
 -u, --url [plugin location] : Set exact URL to download the plugin

from
 -i, --install [plugin name] : Downloads and installs listed

plugins [*]
 -t, --timeout [duration] : Timeout setting: 30s, 1m, 1h...

(infinite by default)
 -r, --remove [plugin name] : Removes listed plugins
 -l, --list : List installed plugins
 -v, --verbose : Prints verbose messages
 -s, --silent : Run in silent mode
 -h, --help : Prints this help message

 [*] Plugin name could be:
 elasticsearch/plugin/version for official elasticsearch plugins

(download from download.elasticsearch.org)
 groupId/artifactId/version for community plugins (download from maven

central or oss sonatype)
 username/repository for site plugins (download from github

master)

Here you can see at the bottom of the output the three different kinds of plugins that
can be automatically downloaded—from Elasticsearch, from Maven Central, or directly
from GitHub. You can also specify the URL manually, as shown in listing B.4, using the
--url parameter, which allows you to install from a local file as well.

Listing B.2 Listing installed plugins

Listing B.3 Available options of the plugin script

Elasticsearch detected the
plugin was a site plugin.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://github.com

386 APPENDIX B Plugins
 For example, if you had a plugin downloaded locally that you wanted to install, you
could install it by prepending file:/// to the full path of the ZIP file. But if you do this,
you’ll need to manually specify the name of the plugin you’re installing.

$ bin/plugin --url file:///downloads/elasticsearch-head.zip --install head
-> Installing head...
Trying file:/downloads/elasticsearch-head.zip...
DownloadingDONE
Installed head into /Users/hinmanm/ies/elasticsearch-1.5.1/plugins/head
Identified as a _site plugin, moving to _site structure ...

Now that you’ve installed the plugin by either having the plugin tool download the
plugin or installing from a local file, you’ll want to be able to access the plugin from
Elasticsearch.

B.3 Accessing plugins
If you start Elasticsearch now that you’ve installed the elasticsearch-head plugin, you’ll
see the log lines shown in the next listing.

[INFO][node] [Black Widow] version[1.5.1], pid[33030],
build[5e38401/2015-04-09T13:41:35Z]

[INFO][node] [Black Widow] initializing ...
[INFO][plugins] [Black Widow] loaded [], sites [head]
[INFO][node] [Black Widow] initialized
[INFO][node] [Black Widow] starting ...
[INFO][transport] [Black Widow] bound_address {inet[/

0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.0.4:9300]}
[INFO][discovery] [Black Widow] elasticsearch/evzmesg5QlmRjffe-

HnGIw
[INFO][cluster.service] [Black Widow] new_master [Black

Widow][evzmesg5QlmRjffe-HnGIw][Xanadu-2.domain][inet[/
192.168.0.4:9300]], reason: zen-disco-join (elected_as_master)

[INFO][http] [Black Widow] bound_address {inet[/
0:0:0:0:0:0:0:0:9200]}, publish_address {inet[/192.168.0.4:9200]}

[INFO][node] [Black Widow] started

Pay close attention to the loaded [], sites [head] text. This text indicates which plu-
gins Elasticsearch has loaded; in this case, the empty [] means that there are no code
plugins installed. The [head] text shows that the head plugin has been installed and
detected correctly by Elasticsearch. If the plugin doesn’t show up in these log mes-
sages, it most likely hasn’t been installed correctly.

 Once Elasticsearch has been started with a site plugin installed, you can navigate
to the HTML for the plugin by going to http://localhost:9200/_plugin/head in any
web browser.

 Figure B.2 is an example screenshot of the elasticsearch-head plugin running.

Listing B.4 Manually installing a plugin from a local ZIP file

Listing B.5 Example output starting Elasticsearch with the head plugin installed
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9200/_plugin/head

387Telling Elasticsearch to require certain plugins
To access a site plugin, visit http://localhost:9200/_plugin/<name>, where <name>
is the name of the plugin that you’ve installed. This works for all site plugins, but
what about code plugins? Other than seeing the name of the plugin in the loaded
[myplugin] log message when starting Elasticsearch, how you access a code plugin
will differ depending on what the plugin is doing. A plugin that adds different analyz-
ers for Elasticsearch will be used by specifying the new analyzer name in the mapping;
a plugin that adds a new type of query will be accessed through the regular query DSL.
These plugins may also require configuration via values added to the elasticsearch.yml
file. Check the documentation for the plugin you’re installing to see how it should be
correctly configured.

B.4 Telling Elasticsearch to require certain plugins
When deploying Elasticsearch, it can be helpful to require certain plugins to be
installed. This means that Elasticsearch will refuse to start until these plugins are
installed and detected. This is accomplished by using the plugin.mandatory setting.
For example, to require that the elasticsearch-head and ICU analysis plugins are
both installed, you’d add this line to elasticsearch.yml:

plugin.mandatory: analysis-icu,head

Figure B.2 Screenshot of the elasticsearch-head plugin
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9200/_plugin/<name>

388 APPENDIX B Plugins

Insta

requ
plu

Elastics
now s
If you then try to start Elasticsearch without these plugins installed, you’ll see that
Elasticsearch at first refuses to start. But it starts once the plugins have been installed,
as shown in the next listing.

$ bin/elasticsearch
[INFO][node] [Carrion] version[1.5.1], pid[46463],

build[5e38401/2015-04-09T13:41:35Z]
[INFO][node] [Carrion] initializing ...
{1.5.1}: Initialization Failed ...
- ElasticsearchException[Missing mandatory plugins [analysis-icu, head]]

$ bin/plugin --install mobz/elasticsearch-head
-> Installing mobz/elasticsearch-head...
Trying https://github.com/mobz/elasticsearch-head/archive/master.zip...
DownloadingDONE
Installed mobz/elasticsearch-head into /Users/hinmanm/ies/elasticsearch-

1.5.1/plugins/head
Identified as a _site plugin, moving to _site structure ...

$ bin/plugin --install elasticsearch/elasticsearch-analysis-icu/2.5.0
-> Installing elasticsearch/elasticsearch-analysis-icu/2.5.0...
Trying http://download.elasticsearch.org/elasticsearch/elasticsearch-

analysis-icu/elasticsearch-analysis-icu-2.5.0.zip...
DownloadingDONE
Installed elasticsearch/elasticsearch-analysis-icu/2.5.0 into /Users/hinmanm/

ies/elasticsearch-1.5.1/plugins/analysis-icu

$ bin/elasticsearch
[INFO][node] [ISAAC] version[1.5.1], pid[46698],

build[5e38401/2015-04-09T13:41:35Z]
[INFO][node] [ISAAC] initializing ...
[INFO][plugins] [ISAAC] loaded [analysis-icu], sites [head]
[INFO][node] [ISAAC] initialized
[INFO][node] [ISAAC] starting ...
[INFO][node] [ISAAC] started

B.5 Removing or updating plugins
If you decide you no longer want to have a plugin installed, you can remove the plugin
using bin/plugin -r or bin/plugin --remove followed by the name of the plugin. For
example, to remove the elasticsearch-analysis-icu plugin you installed in the ear-
lier section, you’d use the code shown in the following listing.

Listing B.6 Making plugins mandatory for the Elasticsearch service

Elasticsearch refuses to
start because the plugins
aren’t installed.

lling
the

ired
gins

earch
tarts.

The analysis-icu
and head plugins

are loaded.
Licensed to Thomas Snead <n.ordickan@gmail.com>

389Removing or updating plugins
$ bin/plugin --remove analysis-icu
-> Removing analysis-icu...
Removed analysis-icu
$ bin/plugin --list
Installed plugins:
 - No plugin detected in /data/elasticsearch/plugins

Updating plugins uses this same functionality, but there’s no upgrade option on the
plugin tool. Instead, to update a plugin you must remove the old version and then
install the version you want. To upgrade the elasticsearch-head plugin, you’d run bin/
plugin --remove head followed by bin/plugin --install mobz/elasticsearch-head.

 As you can see, managing plugins is easy with Elasticsearch’s included plugin
script. For a list of helpful plugins managed by both Elastic and the community, check
out the following URL: www.elastic.co/guide/en/elasticsearch/reference/current/
modules-plugins.html#known-plugins.

Listing B.7 Removing the analysis-icu plugin

Removing the
analysis-icu plugin

The analysis-icu
plugin is no longer
listed as installed.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-plugins.html#known-plugins
http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-plugins.html#known-plugins

appendix C
Highlighting

Highlighting indicates why a document results from a query by emphasizing match-
ing terms, giving the user an idea of what the document is about, and also showing
its relationship to the query, as shown in figure C.1.

 Although figure C.1 is taken from DuckDuckGo, Elasticsearch offers high-
lighting functionality, too. For example, you can search for “elasticsearch” in get-
together event titles and make that word stand out like this:

 "title" : ["Introduction to Elasticsearch"],

To get such highlighting, you’ll need three things, and we’ll discuss them in detail
in this appendix:

■ A highlight part of your search request, which will go on the same level as
query and aggregations

■ A list of fields you want to be highlighted, like the event name or its description
■ Highlighted fields included in _source or stored individually

Figure C.1 Highlighting shows why a document matched a query.
390

Licensed to Thomas Snead <n.ordickan@gmail.com>

391Highlighting basics
NOTE All fields are included in _source by default but aren’t stored individu-
ally. You can find more information about _source and stored fields in chap-
ter 3, section 3.4.1.

After you do the basic highlighting, you might want to turn some knobs. In this
appendix, we’ll also discuss the most important highlighting options:

■ What to match—You can decide, for example, to show a snippet of a field, even if
there are no terms to highlight in there, to show the same fields for all docu-
ments. Or you might want to use a different query for highlighting than the one
you use for searching.

■ How fragments should look—With large fields, you typically don’t get back all their
contents with highlighted terms; you just get one or more fragments of text
around those terms. You can configure how many fragments to allow, which
order they should be shown, and how big they should be in.

■ How to highlight—You can change the default and tags to something
else. If you stick to HTML tags, you can have Elasticsearch encode the whole
fragments in HTML (for example, by escaping ampersand (&) characters) so
you can render those fragments correctly in your application.

We’ll also discuss different highlighting implementations. The default implementa-
tion is called plain and relies on re-analyzing the text from stored fields in order to
highlight relevant terms. This process might become too expensive for big fields, like
the contents of a blog post. Alternatively, you can use the Postings Highlighter or the
Fast Vector Highlighter. Both require you to change the mapping to make Elastic-
search store additional data: term offsets for the Postings Highlighter and term vec-
tors for the Fast Vector Highlighter. Both changes will increase your index size and
use more computing power while indexing.

 Each highlighting implementation comes with its own set of features, and we’ll talk
about them later in this appendix. But first, let’s deal with the basics of highlighting.

C.1 Highlighting basics
To start, you’ll recreate the highlighting snippet from the introduction. In listing C.1,
you’ll run a search on the get-together events for the term “elasticsearch” in the name
and will highlight this term in the title and the description fields.

NOTE For the listing to work, you need to download the code samples for this
book by cloning the Git repository from https://github.com/dakrone/elastic-
search-in-action and running populate.sh to index the sample data.

curl localhost:9200/get-together/event/_search?pretty -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }

Listing C.1 Highlighting terms in two fields

Typical match query
for Elasticsearch;
nothing new here
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

392 APPENDIX C Highlighting

Th
will c
_sou

be t
the
ighted
, if
match
erm
tic-
h”.
 },
 "highlight": {
 "fields": {
 "title": {},
 "description": {}
 }
 }
}'
reply
 "hits" : [{
 "_index" : "get-together",
 "_type" : "event",
 "_id" : "103",
 "_score" : 0.9581454,
 "_source":{
 "host": "Lee",
 "title": "Introduction to Elasticsearch",
 "description": "An introduction to ES and each other. We can meet and

➥ greet and I will present on some Elasticsearch basics and how we use it.",
[…]
 "highlight" : {
 "title" : ["Introduction to Elasticsearch"],
 "description" : ["can meet and greet and I will present on some

➥ Elasticsearch basics and how we use it."]
 }
[…]
 "title": "Elasticsearch and Logstash",
 "description": "We can get together and talk about Logstash -

➥ http://logstash.net with a sneak peek at Kibana",
[…]
 "highlight" : {
 "title" : ["Elasticsearch and Logstash"]
 }

Highlighting works here because, by default, the title and description fields are
included in _source. If they had been stored individually (by setting store to true in
the mapping of that field), Elasticsearch would have extracted the contents from the
stored field instead of retrieving it from _source.

TIP Storing a field and not going through _source can be faster if you’re
highlighting a single field. If you’re highlighting multiple fields, using _source
is typically faster because all fields are fetched in the same trip to the disk. You
can force using _source even for stored fields by setting force_source to
true in your highlighting request. For most use cases, it’s best to stick with the
default of using _source alone—both in the mapping and for highlighting.

Depending on your use case, the results from listing C.1 might not be what you need.
Let’s look at two of the most common problems and how you can fix them.

C.1.1 What should be passed on to the user

Results from listing C.1 contain the _source field, plus the title and/or description
fields if there’s something to highlight in them. Assuming you want to return the

Include which
fields you want
to highlight.

e reply
ontain
rce as
fore… …bu

also
highl
fields
they
the t
“elas
searc
Licensed to Thomas Snead <n.ordickan@gmail.com>

393Highlighting basics
title and description fields to the user, you’ll have to implement something like
this in your application:

■ Check if the field (title or description, in this case) is highlighted.
■ If it is, show the highlighted fragment. If it’s not, take the original field content

from _source.

A more elegant solution is to have the highlighter return fragments of both the title
and the description fields, regardless of whether there’s something to highlight in
there or not. You’ll do that in listing C.2 by setting no_match_size to the number of
characters you want the fragment to have, if the field doesn’t match. The default is 0,
which is why fields that don’t match don’t appear at all.

NOTE Configuring the fragment size is useful when you can’t control how
large fields are. If you take an event description from _source and it fills one
page, for example, it will ruin the UI. We’ll discuss more about fragment sizes
and other fragment options in section C.2.1.

With the highlighter returning all fields you need, the _source field from the results
becomes redundant, so you can skip returning it by setting _source to false in your
search request, as shown in the next listing.

curl localhost:9200/get-together/event/_search?pretty -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "highlight": {
 "no_match_size": 100,
 "fields": {
 "title": {},
 "description": {}
 }
 },
 "_source": false
}'
reply
 "hits" : [{
 "_index" : "get-together",
 "_type" : "event",
 "_id" : "103",
 "_score" : 0.9581454,
 "highlight" : {
 "title" : ["Introduction to Elasticsearch"],
 "description" : ["can meet and greet and I will present on some

➥ em>Elasticsearch basics and how we use it."]
 }
[…]

Listing C.2 Forcing the highlighter to return the needed fields with no_match_size

Show up to 100
characters of a field
that doesn’t match.

You have all the needed
information in the highlighted
fields, so you disable _source.

No _source
in the results
Licensed to Thomas Snead <n.ordickan@gmail.com>

394 APPENDIX C Highlighting
 "highlight" : {
 "title" : ["Elasticsearch and Logstash"],
 "description" : ["We can get together and talk about Logstash -

➥ http://logstash.net with a sneak peek at Kibana"]

Highlighting the same fields regardless of whether they match or not is a common use
case. Next we’ll look at a different (though still common) use case.

C.1.2 Too many fields contain highlighted terms

If you pass on the highlighted results of listing C.2 to users, they might get confused
by getting elasticsearch descriptions highlighted anyway because they searched
only in the title field. To highlight only fields matching the query, you can set
require_field_match to true, as in the following listing. Now if the query matches
the title field, only the title field gets its terms highlighted.

curl localhost:9200/get-together/event/_search?pretty -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "highlight": {
 "require_field_match": true,
 "fields": {
 "title": {},
 "description": {}
 }
 }
}'
reply
 "highlight" : {
 "title" : ["Introduction to Elasticsearch"]
 }
[…]
 "highlight" : {
 "title" : ["Elasticsearch and Logstash"]
 }

Another method to get to the same result is to figure out that the search goes to the
title field and add only title in the list of highlighted fields. This might work, but
sometimes you don’t have control over which fields are searched on. For example, if
you’re using the query_string query that we discussed in chapter 4, someone could
introduce description:elasticsearch, even if the default searched field is some-
thing else.

Listing C.3 Highlighting only fields matching the query

This description doesn’t match, but the
field is shown anyway for completeness.

Only the
title field is
highlighted
now.
Licensed to Thomas Snead <n.ordickan@gmail.com>

395Highlighting options
 require_field_match and no_match_size are just two of the available highlight-
ing options. There are many more you may find useful, and we’ll discuss them in the
next sections.

C.2 Highlighting options
Besides choosing which fields to work with, you can configure highlighting with other
options, like these:

■ Adjusting the size of highlighted fragments and their number
■ Changing highlighting tags and encoding
■ Specifying a different query for highlighting, instead of the main query

We’ll discuss all of these next.

C.2.1 Size, order, and number of fragments

Highlighting elasticsearch in an event’s description field will show only a frag-
ment of about 100 characters around the highlighted terms. As you might have
noticed from listings C.1 and C.2, this doesn’t always contain the whole field, so the
context could be too large or too small:

 "description" : ["can meet and greet and I will present on some

➥ Elasticsearch basics and how we use it."]

We say about 100 characters because Elasticsearch tries to make sure that words aren’t
truncated.

FRAGMENT SIZE

Naturally, there’s a fragment_size option to change the default fragment size. Setting
it to 0 will show the entire field content, which works nicely for short fields like names.

 You can set fragment size globally for all fields and individually for each field. Indi-
vidual settings override global settings, as shown in the next listing, where you’ll
search for “Elasticsearch,” “Logstash,” and “Kibana” in the description field.

curl localhost:9200/get-together/event/_search?pretty -d '{
 "query": {
 "match": {
 "description": "elasticsearch logstash kibana"
 }
 },
 "highlight": {
 "fragment_size": 20,
 "fields": {
 "title": {},
 "description": {
 "fragment_size": "40"
 }
 }

Listing C.4 Field-specific fragment_size setting overrides the global setting

Global fragment size
applies to all fields

Field-specific fragment
size overrides the
global setting
Licensed to Thomas Snead <n.ordickan@gmail.com>

396 APPENDIX C Highlighting

Frag
sh

on
of th
 }
}'
reply
 "highlight" : {
 "title" : ["Logging and Elasticsearch"],
 "description" : ["dive for what Elasticsearch is and how

➥ it", "logging with Logstash as well as Kibana!"]
 }
[…]
 "highlight" : {
 "title" : ["Elasticsearch and Logstash"],
 "description" : ["together and talk about Logstash -

➥ http://logstash", "with a sneak peek at Kibana"]
 }
[…]
 "highlight" : {
 "title" : ["Elasticsearch at"],
 "description" : ["how they use Elasticsearch"]
 }

You can see from this listing that if the fragment size is small enough and there are
enough occurrences of the term, multiple fragments are generated.

ORDER OF FRAGMENTS

By default, fragments are returned in the order in which they appear in the text, as
you saw in listing C.4. This works well for short texts, where the natural order of frag-
ments gives a better overview of the whole content. For example, the description
fragments you got back in listing C.4 do a good job of showing the description.

 For large documents, such as books, the natural order doesn’t work so well
because fragments can be far apart, so the user won’t see any link. For example, if you
searched for “elasticsearch parent child” in this book, the top two fragments might
look like this:

"we will discuss how Elasticsearch works and"
"the child aggregation works on buckets generated by"

Not terribly relevant, assuming you were looking for parent-child relationships in Elas-
ticsearch. Even though the book itself is relevant because it discusses the topic, it
would have been nicer to show a fragment that appears later in the book:

"parent-child relationships work with different Elasticsearch documents"

When you’re highlighting large fields, it makes sense to arrange fragments in the
order of their relevance to the query because users are likely to be interested in seeing
those relevant parts in order, so they can decide if the result is what they expected.

 The highlighter calculates a TF-IDF score for each fragment, much as it calculates
scores for documents within the index. To order fragments by this score, you have to
set order to score in the highlight part of the request. As is done with fragment
sizes, you can set the order individually and/or globally. For example, the following

ments
owing

ly part
e field
Licensed to Thomas Snead <n.ordickan@gmail.com>

397Highlighting options
highlight section will change the order of fragments for the “elasticsearch logstash
kibana” query you ran in listing C.4:

 "highlight": {
 "fields": {
 "description": {
 "fragment_size": 40,
 "order": "score"
 }
 }
 }

You can see that the fragment matching more terms appears first because it has a
higher score:

"description" : ["logging with Logstash as well as

➥ Kibana!", "dive for what Elasticsearch is and how it"]

NUMBER OF FRAGMENTS

With big documents such as books, it makes sense to show only one large, relevant
fragment. Multiple small fragments work better for describing smaller fields, like the
event descriptions you’ve worked with so far. You can adjust the number of fragments
by setting number_of_fragments (shocker!), which defaults to 5:

 "highlight": {
 "fields": {
 "description": {
 "number_of_fragments": 1
 }
 }
 }

For really small fields, such as names or short descriptions, you can set number_
of_fragments to 0. This will skip using fragments altogether and return the whole
field as a single fragment, ignoring the value of fragment_size.

 With the size, order, and number of fragments figured out, let’s move on to config-
uring how those fragments are returned.

C.2.2 Highlighting tags and fragment encoding

You can change the and tags that are used by default through the pre_tags
and post_tags options. In the following listing, you’ll use and instead.

curl localhost:9200/get-together/event/_search?pretty -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },

Listing C.5 Custom highlighting tags
Licensed to Thomas Snead <n.ordickan@gmail.com>

398 APPENDIX C Highlighting
 "highlight": {
 "pre_tags" : [""],
 "post_tags" : [""],
 "fields": {
 "title": {}
 }
 }
}'
reply
 "highlight" : {
 "title" : ["Elasticsearch at Rangespan and Exonar"]
 }

If your custom tags are HTML like the default ones, you probably want to render the
fragments in HTML to show them in some user interface. Here you might encounter
a problem: by default, Elasticsearch returns fragments without any encoding, so
they won’t render properly if there are special characters, such as the ampersand
(&). For example, a fragment that’s highlighted as select© would
appear as shown in figure C.2, because the © sequence is interpreted as the
copyright character.

The ampersand needs to be escaped as &. You can do that by setting encoder
to html:

 "highlight": {
 "encoder": "html",
 "fields": {
 "title": {}
 }
 }

The HTML encoder will make the text render properly, as shown in figure C.3.

Now that we’ve gone through customizing the contents of fragments, let’s take a
step back and look at the query that generated the highlighted fragments in the
first place. By default, terms from the main query are used, but you can define a cus-
tom query.

Global tags; you can
also define different
tags for each field.

New tags are used
in the highlighted

fragments.

Figure C.2 The lack of fragment
encoding can make the browser
interpret HTML incorrectly.

Figure C.3 Using the HTML
encoder avoids parsing mistakes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

399Highlighting options
C.2.3 Highlight query

Using the main query for highlighting works for most use cases, but there are some
that require special care—for example, if you use rescore queries.

 You first met rescoring in chapter 6 when we discussed relevancy, because rescor-
ing allows you to improve the ranking of results by running alternative—often expen-
sive—queries only on the top N of the overall result set. Elasticsearch then combines
the original score with the score from the rescore queries to get the final ranking. The
problem: rescore queries don’t apply to highlighting.

 This is where custom highlight queries become useful—for example, if the main
query is looking for groups with elasticsearch or simply search in their name, and you
also want to boost the presence of tags that end with search, like enterprise search. A
wildcard query for *search is expensive, as you saw in chapter 10, section 10.4.1, so you
can put this criterion in a rescore query that runs on only the top 200 documents.

 In the listing that follows, you’ll see how you can put elasticsearch and search
names plus *search tags in the highlight query to highlight all the terms involved in
the search. You can see that wildcards are expanded and highlight matching tags like
enterprise search.

curl localhost:9200/get-together/group/_search?pretty -d '{
 "query" : {
 "match" : {
 "name" : "elasticsearch search"
 }
 },
 "rescore" : {
 "window_size": 200,
 "query" : {
 "rescore_query" : {
 "wildcard" : {
 "tags.verbatim" : "*search"
 }
 }
 }
 },
 "highlight": {
 "highlight_query": {
 "query_string": {
 "query": "name:elasticsearch name:search tags.verbatim:*search"
 }
 },
 "fields": {
 "name": {},
 "tags.verbatim": {}
 }
 }
}'

Listing C.6 Highlight query contains terms from the main and the rescore query

Main query matches
elasticsearch and search
in the name field

Rescore query
matches tags
ending in search

Highlight query
matches all main and
rescore query criteria
Licensed to Thomas Snead <n.ordickan@gmail.com>

400 APPENDIX C Highlighting

sea
sea

high
in th

e
d,
reply
 "highlight" : {
 "name" : ["Elasticsearch Denver"],
 "tags.verbatim" : ["elasticsearch"]
[...]
 "highlight" : {
 "name" : ["Enterprise search London get-together"],
 "tags.verbatim" : ["enterprise search"]

Now let’s take a deeper look at how highlighting works under the hood. This will allow
you to choose the implementation that works best for your use case.

C.3 Highlighter implementations
So far we’ve assumed that you’re using the default highlighter implementation
called Plain. The Plain Highlighter works by re-analyzing the text from each field to
identify terms to highlight and where those terms are located in the text. This is
good for most use cases and only requires highlighted fields to be stored, either
independently or in the _source field. Because it has to analyze the text again, the
Plain Highlighter can be slow for large fields; for example, when you index books or
blog post contents.

 For such use cases, two other implementations come in handy:

■ Postings Highlighter
■ Fast Vector Highlighter

Both are faster than the Plain Highlighter on large fields, but both require additional
data to be stored in the index—data on which their speed is based. Both also come up
with their unique features, which will be discussed next.

 If it’s not obvious which one is best for you, we suggest starting with the Plain High-
lighter and moving on to the Postings Highlighter for fields where the Plain Highlighter
proves to be too slow, because the Postings Highlighter adds little overhead in terms
of index size and also works well if fields are smaller. If the Postings Highlighter doesn’t
give you the needed functionality, try the Fast Vector Highlighter.

C.3.1 Postings Highlighter

The Postings Highlighter requires you to set index_options to offsets for high-
lighted fields, which will store each term’s location (position and offset) in the index.
As you can see in listing C.7, offsets indicate the exact position of a certain term in the
text, and with this information, the Postings Highlighter is able to identify which
terms to highlight without having to re-analyze the text.

 In this listing you’ll use the Analyze API, which you first encountered in chapter 5
on analysis.

elastic-
rch and
rch are
lighted
e name

field.

All tags
ending in
search ar
highlighte
too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

401Highlighter implementations
curl localhost:9200/_analyze?pretty -d 'Introduction to Elasticsearch'
reply
{
 "tokens" : [{
 "token" : "introduction",
 "start_offset" : 0,
 "end_offset" : 12,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "to",
 "start_offset" : 13,
 "end_offset" : 15,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "elasticsearch",
 "start_offset" : 16,
 "end_offset" : 29,
 "type" : "<ALPHANUM>",
 "position" : 3
 }]
}

When analyzing the text, Elasticsearch is able to extract each term’s offsets in order
to store its exact location. With offsets stored, Elasticsearch doesn’t have to analyze
the text again during highlighting in order to locate each term. Adding term offsets
to the index is a typical tradeoff where you allow slower indexing and a bigger index
in order to get better query latency. You saw many such performance tradeoffs in
chapter 10.

 When you set index_options to offsets, the Postings Highlighter is used auto-
matically. For example, in the next listing you’ll enable offsets for the content field of
a new index, add two documents, and highlight them.

INDEX_URL="localhost:9200/test-postings"
curl -XDELETE $INDEX_URL
curl -XPUT $INDEX_URL -d '{
 "mappings": {
 "docs": {
 "properties": {
 "content": {
 "type": "string",
 "index_options": "offsets"
 }
 }
 }
 }
}'

Listing C.7 Analyze API showing offsets

Listing C.8 Using the Postings Highlighter

When analyzing text,
Elasticsearch can

store offsets.

With offsets stored, a second
analysis isn’t necessary to
locate this term.

Index name for
playing with the
Postings Highlighter

Required for
the Postings
Highlighter
Licensed to Thomas Snead <n.ordickan@gmail.com>

402 APPENDIX C Highlighting

Inde
two sam
docum
curl -XPUT $INDEX_URL/docs/1 -d '{
 "content": "Postings Highlighter rocks. It stores offsets in postings."
}'
curl -XPUT $INDEX_URL/docs/2 -d '{
 "content": "Postings are a generic name for the inverted part of the

➥ index: term dictionary, term frequencies, term positions."
}'
curl -XPOST $INDEX_URL/_refresh
curl "$INDEX_URL/_search?q=content:postings&pretty" -d '{
 "highlight": {
 "fields": {
 "content": {}
 }
 }
}'
reply
 "highlight" : {
 "content" : ["Postings Highlighter rocks.", "It stores

➥ offsets in postings."]
 }
[...]
 "highlight" : {
 "content" : ["Postings are a generic name for the inverted

➥ part of the index: term dictionary, term frequencies, term positions."]
 }

You can see from this listing that the highlighted samples are sentences, whether large
or small. The Postings Highlighter will ignore the fragment_size option if you set it;
fragments will always be sentences unless you set number_of_fragments to 0, in which
case the whole field is treated as one fragment.

TIP If you want to set the highlighter implementation manually, you can do
so by setting type to plain (for the Plain Highlighter), postings (for the
Postings Highlighter), or fvh (for the Fast Vector Highlighter). This can be
done globally or per field and is useful if you change your mind about the
implementation and you don’t want to re-index. For example, you index off-
sets but don’t like the sentence-as-fragment approach of the Postings High-
lighter, so you need a way to get back to using the Plain Highlighter.

Internally, the Postings Highlighter breaks the field into sentences (which then
become fragments) and treats those sentences as separate documents, scoring them
by using BM25 similarity. As we discussed in chapter 6, BM25 is a TF-IDF–based similar-
ity that works well for short fields, like your sentences are supposed to be.

 Because of the way it creates and scores fragments, the Postings Highlighter works
well when you’re indexing natural language, such as books or blogs. It might not work
so well when you’re indexing code, for example, because the concept of a sentence
often doesn’t work, and you can end up with the entire field as a single fragment and
no options to reduce the fragment size.

 Another downside of the Postings Highlighter is that, at least in version 1.4, it
doesn’t work well with phrase queries because it only accounts for individual terms.

xing
ple

ents

Query for postings
in the content
field; Postings
Highlighter is used
automatically.
Licensed to Thomas Snead <n.ordickan@gmail.com>

403Highlighter implementations
For example, in the next listing you’ll look for the phrase "Elasticsearch intro" by
using a match_phrase query.

curl -XPUT localhost:9200/test-postings/docs/2 -d '{
 "content": "Elasticsearch intro - first you get an intro of the core

➥ concepts, then we move on to the advanced stuff"
}'
curl localhost:9200/test-postings/_search?pretty -d '{
 "query": {
 "match_phrase": {
 "content": "Elasticsearch intro"
 }
 },
 "highlight": {
 "encoder": "html",
 "fields": {
 "content": {}
 }
 }
}'
reply
"highlight": {
 "content": ["Elasticsearch intro - first you get an

➥ intro of the core concepts, then we move on to the advanced
stuff"]

}
curl localhost:9200/test-postings/_search?pretty -d '{
 "query": {
 "match_phrase": {
 "content": "Elasticsearch intro"
 }
 },
 "highlight": {
 "encoder": "html",
 "fields": {
 "content": {
 "type": "plain"
 }
 }
 }
}'
#reply
"highlight" : {
 "content" : ["Elasticsearch intro - first you get an

➥ intro of the core concepts, then we move on to the advanced stuff"]
}

You get individual terms highlighted even if they don’t belong to the phrase, which
doesn’t happen with the Plain Highlighter. On the upside, although indexing offsets
increase your index size and slow down indexing a bit, the overhead is lower than what
you get when adding term vectors, which are needed by the Fast Vector Highlighter.

Listing C.9 Postings Highlighter matches all the terms and discounts phrases

Second occurrence of
intro is highlighted,
even though it’s not
part of the phrase

With the Plain
Highlighter, only the

phrase is highlighted.
Licensed to Thomas Snead <n.ordickan@gmail.com>

404 APPENDIX C Highlighting
C.3.2 Fast Vector Highlighter

To enable the Fast Vector Highlighter for a field, you have to set term_vector to
with_positions_offsets in the mapping. This will allow Elasticsearch to identify
terms as well as their location in the text without re-analyzing the field content. For
large fields—for example, those over 1 MB—the Fast Vector Highlighter is faster than
the Plain Highlighter.

When term_vector is set to with_positions_offsets for a field, Elasticsearch auto-
matically uses the Fast Vector Highlighter for that field. For example, the get-together

What are term vectors?
Term vectors are a way to represent documents by using terms as dimensions. For
example, the following diagram represents a document with the Elasticsearch and
Logstash terms and another document containing only Elasticsearch.

Metadata, vectors, and rankings
You can also represent a query as another vector and rank documents based on the
distance between the query vector and each document’s vector. Another application
is to add other metadata to each document—for example, the field’s total size—that
will influence ranking. For more information about term vectors and their use, go to
https://en.wikipedia.org/wiki/Vector_space_model.

For highlighting, this metadata has to be the list of positions and offsets for each term.
This is why the Fast Vector Highlighter needs the with_positions_offsets setting.
Alternative settings are no (default), yes, with_positions, and with_offsets.

Compared to the Postings Highlighter, the Fast Vector Highlighter takes up more
space and requires more computation during indexing, because both need positions
and offsets, but only the Fast Vector Highlighter has to compute the term vectors
themselves, which are disabled by default.

Logstash

doc2: Elasticsearch

doc1: Elasticsearch Logstash

Elasticsearch
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://en.wikipedia.org/wiki/Vector_space_model

405Highlighter implementations
event and group descriptions from the code samples use this highlighter by default.
Here’s a relevant snippet from the mapping:

 "group" : {
 "properties" : {
 "description" : {
 "type" : "string",
 "term_vector": "with_positions_offsets"

Compared to the Postings Highlighter, this offers better phrase highlighting. Instead
of highlighting every matching term, the Fast Vector Highlighter highlights only
terms belonging to the phrase—as the Plain Highlighter did in listing C.9.

 The Fast Vector Highlighter also comes with unique functionality:

■ It works nicely with multi-fields, because it’s able to combine matches from multi-
fields into the same set of fragments,

■ If there are multiple words to highlight, you can highlight them with differ-
ent tags.

■ You can configure how the boundaries of a fragment are selected.

Let’s take a deeper look at each of these features.

HIGHLIGHTING MULTI-FIELDS

You met multi-fields in chapter 3, section 3.3.2, as a way to index the same text in mul-
tiple ways. Multi-fields are a great way to refine your searches, but highlighting them
properly may be tricky if variations of the same field produce different matches. Take
the following listing, for example, where the description field is analyzed in two
ways: the default is the english analyzer, which uses stemming to match search with
searching. The suffix subfield uses a custom analyzer that makes use of Edge
ngrams to match words with common suffixes, such as elasticsearch and search.
When you do a multi_match query on both of them, the Plain Highlighter can match
only one field at a time.

curl -XPUT localhost:9200/multi -d '{
 "settings": {
 "analysis": {
 "analyzer": {
 "my-suffix": {
 "tokenizer": "standard",
 "filter": ["lowercase","suffix"]
 }
 },
 "filter": {
 "suffix": {
 "type": "edgeNGram",
 "min_gram": 5,
 "max_gram": 5,

Listing C.10 Plain Highlighter doesn’t work well with multi-fields

Custom analyzer that
accounts for only the
last five letters of
each term
Licensed to Thomas Snead <n.ordickan@gmail.com>

406 APPENDIX C Highlighting

er
ight

.

 "side": "back"
 }
 }
 }
 },
 "mappings": {
 "event": {
 "properties": {
 "description": {
 "type": "string",
 "analyzer": "english",
 "term_vector": "with_positions_offsets",
 "fields": {
 "suffix": {
 "type": "string",
 "analyzer": "my-suffix",
 "term_vector": "with_positions_offsets"
 }
 }
 }
 }
 }
 }
}'
curl -XPUT localhost:9200/multi/event/1 -d '{
 "description": "elasticsearch is about searching"
}'
curl localhost:9200/multi/_refresh
curl -XGET localhost:9200/multi/event/_search -d'
{
 "query": {
 "multi_match": {
 "query": "search",
 "fields": ["description", "description.suffix"]
 }
 },
 "highlight": {
 "type": "plain",
 "fields": {
 "description": {},
 "description.suffix": {}
 }
 }
}'
reply
"highlight": {
 "description": ["elasticsearch is about searching"],
 "description.suffix": ["elasticsearch is about searching"]

Here’s where the Fast Vector Highlighter comes to the rescue because it can combine
both multi-fields into one and highlight all the matches. It only requires term_vector
to be set to with_positions_offsets on all the fields you need to highlight (which is
the requirement for the Fast Vector Highlighter to work in the first place). You

English analyzer does
stemming on the default
field, matching search
with searching

Custom analyzer takes
suffixes only, matching
elasticsearch with
search

Plain
Highlight
can highl
only one
match or
the other
Licensed to Thomas Snead <n.ordickan@gmail.com>

407Highlighter implementations
already added this in this listing. To combine multiple subfields into one, you have to
indicate which subfields you want to highlight with the matched_fields option:

 "highlight": {
 "fields": {
 "description": {
 "matched_fields": ["description","description.suffix"]
 }
 }
 }

With the document and the query from listing C.10, you’ll have the highlighting that
you’d expect:

"highlight": {
 "description": ["elasticsearch is about searching"]

USING DIFFERENT TAGS FOR DIFFERENT FRAGMENTS

To bold the first highlighted word and italicize the second, you can specify an array
of tags:

 "highlight": {
 "fields": {
 "description": {
 "pre_tags": ["", ""],
 "post_tags": ["", ""]

If there are more than two words to highlight, the Fast Vector Highlighter starts over:
bold the third, italicize the fourth, and so on. If you have many words to highlight, you
might want to keep track of their number. You can do that by setting tags_schema to
styled, like in this query:

 "query": {
 "match": {
 "description": "elasticsearch logstash kibana"
 }
 },
 "highlight": {
 "tags_schema": "styled",
 "fields": {
 "description": {}

If you run it on the documents from the code samples, you’ll get the first hit high-
lighted like this:

 "highlight": {
 "description": [
 "for what <em class=\"hlt1\">Elasticsearch is and how

➥ it can be used for logging with <em class=\"hlt2\">Logstash as well

➥ as <em class=\"hlt3\">Kibana!"

This allows you to take the class name (hltX) and figure out which words matched
first, second, and so on.
Licensed to Thomas Snead <n.ordickan@gmail.com>

408 APPENDIX C Highlighting
CONFIGURING BOUNDARY CHARACTERS

Recall from section C.2.1 that we said fragment_size is approximate because
Elasticsearch tries to make sure words aren’t truncated. If you thought then that the
explanation is a bit vague, it’s because the behavior depends on the highlighter
implementation.

 With the Postings Highlighter, fragment size is irrelevant because it breaks the text
down into sentences. The Plain Highlighter adds terms around the highlighted term
until it gets close to the fragment size, which means the boundary is always a term. As
you’ve seen in the listings of this chapter, this works well for natural language, but it
might become problematic in other use cases where the word and term concepts
don’t overlap. For example, if you’re indexing code, you may have variable definitions
like this:

variable_with_a_very_very_very_very_long_name = 1

To search this kind of text effectively, you’ll need an analyzer that can break this long
variable and allow you to search for terms within it.

TIP You can do this with the Pattern Tokenizer, where you specify a pattern
that includes underscores—for example, (\\ |_)—which will tokenize on
spaces and underscores. In chapter 5 you’ll find more information about ana-
lyzers and tokenizers.

If the analyzer will break the variable into tokens, the Plain Highlighter will break it,
too, even if you don’t want it to. For example, a search for long with a fragment size of
20 would give you this:

_very_very_very_very_long_name = 1

The Fast Vector Highlighter works differently because words aren’t the same as terms.
Words are strings delimited by the following characters: .,!? \t\n. You can change
the list through the boundary_chars option. When it builds fragments, it seeks those
characters for boundary_max_scan characters (defaults to 20) from the limits that are
normally set by fragment_size. If it doesn’t find such boundary characters while scan-
ning, the fragment is truncated. By default, the Fast Vector Highlighter will truncate
the code sample while highlighting long:

ry_very_long_name = 1

You can fix this by changing the defaults in two ways. One is to add the underscore to
the list of boundary characters. This will still truncate the variable but in a more pre-
dictable way:

 "highlight": {
 "fields": {
 "description": {
Licensed to Thomas Snead <n.ordickan@gmail.com>

409Highlighter implementations
 "fragment_size": 20,
 "boundary_chars": ".,!? \t\n_"
will yield
very_very_long_name = 1

The other option is to leave boundary_chars set to the default and extend boundary_
max_scan instead, which will increase the chances of having the whole variable included
in the fragment, even if it implies a higher fragment size for this particular fragment:

variable_with_a_very_very_very_very_long_name = 1

Issues with fragment boundaries are typically visible when you need small fragments.
For bigger chunks, inaccurate boundaries are less likely to be visible to users because
their attention tends to focus on the highlighted bits and the words around them, not
on the fragment as a whole. Another parameter to configure for the Fast Vector High-
lighter is the fragment_offset. With this parameter you can control the margin to
start the highlighting from.

LIMITING THE NUMBER OF MATCHES FOR THE FAST VECTOR HIGHLIGHTER

The final configuration option we discuss is the phrase_limit parameter. If the Fast
Vector Highlighter matches many phrases, it could consume a lot of memory. By
default, only the 256 first matches are used. You can change this amount using the
phrase_limit parameter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

appendix D
Elasticsearch

monitoring plugins

The Elasticsearch community offers a wide array of monitoring plugins that make it
easier to manage cluster state and indices and to perform queries via attractive user
interfaces. Many of these plugins are available freely and are in active development
thanks to well-documented plugin and REST APIs and the ever-vibrant Elasticsearch
community.

 In this section, we’ll cover a few of the most popular plugins available:

■ Bigdesk
■ ElasticHQ
■ Head
■ Kopf
■ Elasticsearch Marvel

Each of these plugins is well documented and actively supported by either the
open-source community or, in the case of Elasticsearch Marvel or Sematext SPM,
Elastic, Inc. and Sematext, Inc., respectively. Often the question of which monitor-
ing or management interface to choose is a personal one. If it’s commercial sup-
port you’re looking for, the decision is a binary one. Both Marvel and Sematext, in
this regard, are affordable and actively maintained/backed by proven companies.
Sematext has the additional benefit of offering more than Elasticsearch monitor-
ing, but unless you’re looking for sitewide monitoring of your infrastructure, the
choice becomes clearer. Bigdesk, ElasticHQ, Head, and Kopf share many similarities
in functionality, making your decision a bit trickier. Because this batch of solutions is
410

Licensed to Thomas Snead <n.ordickan@gmail.com>

411Bigdesk: visualize your cluster
either hosted or installable within minutes, it has been our experience that most users
simply try each until they find the one that’s best for them. Sometimes it all comes
down to the ease of use of the user interface.

D.1 Bigdesk: visualize your cluster
Bigdesk, shown in figure D.1, is the creation of Lukáš Vlček and has provided a solid
monitoring plugin user interface since version 0.17.0 of Elasticsearch. Bigdesk offers
live charts and statistics, allowing you to visualize changes occurring across your clus-
ter in real time.

 One of the most desirable features of Bigdesk, and a rarity among most of the
available plugins, is the ability to visualize your cluster topography. The cluster you
built using the get-together application in the book is shown in figure D.2.

 This feature is rather fine-grained in that it allows you to see nodes, shards, and
indices deployed across your cluster in great detail.

 Because Bigdesk communicates via the Elasticsearch REST API, you can use it in
three ways:

■ As a server-side installed plugin
■ From the Bigdesk.org website: http://bigdesk.org
■ Downloaded and installed locally

Figure D.1 Website: http://bigdesk.org/ License: Apache License v2.0
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://bigdesk.org
http://bigdesk.org/

412 APPENDIX D Elasticsearch monitoring plugins
D.2 ElasticHQ: monitoring with management
ElasticHQ offers a real-time analytics display for monitoring; the ability to create, edit,
and delete aliases, mappings, and indices for management; and a query interface
for easy searching on Elasticsearch clusters. This is a recent trend, in that many of the
monitoring plugins are now branching out into management and query interfaces
for testing and maintenance. Figure D.3 shows the main index-management screen

Figure D.2 Bigdesk makes visualizing the get-together cluster easy.
Licensed to Thomas Snead <n.ordickan@gmail.com>

413ElasticHQ: monitoring with management
for ElasticHQ, which allows users to modify their indices in real time via an easy-to-
use interface.

 More than just a real-time monitoring plugin, it allows the creation of indices and
mappings, and it includes a query interface and a REST UI that allows you to tinker
with the Elasticsearch endpoint requests.

 By far, the most useful feature of this plugin is its ability to diagnose your cluster,
applying rules that can alert you to the source of problems within your cluster. These
diagnostic rules measure the values of process, operating-system, and UI variables in
Elasticsearch and trigger warnings and alerts if they exceed a certain threshold, as
shown in figure D.4.

 Because ElasticHQ communicates via the Elasticsearch REST API, it can be used in
three ways:

■ As a server-side installed plugin
■ From the ElasticHQ.org website: www.elastichq.org
■ Downloaded and installed locally

Figure D.3 Website: www.elastichq.org/ License: Apache License v2.0
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastichq.org
http://www.elastichq.org/

414 APPENDIX D Elasticsearch monitoring plugins
D.3 Head: advanced query building
The Head plugin was one of the first on the scene. Even though it’s been around the
longest and its user interface hasn’t changed much, it’s still in active development,
adding new features and supporting newer versions of Elasticsearch.

 Head has an easy-to-use interface (shown in figure D.5) and features a powerful
query-builder tool that allows you to create complex queries without the need for
cURL or manually crafting them in a command-line REST tool.

 Head can be run in two ways:

■ As a server-side installed plugin
■ Downloaded and installed locally: https://github.com/mobz/elasticsearch-head

Figure D.4 Node diagnostics screen
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/mobz/elasticsearch-head

415Kopf: snapshots, warmers, and percolators
D.4 Kopf: snapshots, warmers, and percolators
Kopf, a German word that translates to “head” in English, is a relative newcomer on
the scene, offering a complete administrative interface to Elasticsearch via an easy-to-
use and attractive UI, shown in figure D.6.

 Kopf contains many features that some of the other plugins listed here do not, such
as access to the snapshots, percolator, and warmer APIs. Both the percolator and warmer
user interfaces come in handy for users wanting to use these features without having to
learn all of the API commands. Kopf even includes a REST user interface for those who
want tighter control over their administrative interactions with their Elasticsearch
instance, allowing users to execute formatter JSON requests to a running cluster.

 Kopf can be run in the following ways:

■ As a server-side plugin
■ Online at http://lmenezes.com/elasticsearch-kopf/
■ Downloaded and installed locally

Figure D.5 Website: https://github.com/mobz/elasticsearch-head License: Apache License v2.0

Figure D.6 Website: https://github.com/lmenezes/elasticsearch-kopf License: MIT
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/mobz/elasticsearch-head
https://github.com/lmenezes/elasticsearch-kopf
http://lmenezes.com/elasticsearch-kopf/

416 APPENDIX D Elasticsearch monitoring plugins
D.5 Marvel: fine-grained analysis
Elasticsearch Marvel is a commercial monitoring solution offered by Elasticsearch. It’s
a visually appealing user interface (shown in figure D.7), allowing for deep insight
into your running cluster, such as drill-down views of OS, JVM, search, and index
request performance.

 As a server-side installed plugin, Marvel has the advantage of providing historical
data analysis, as well as real-time performance information on cache sizes, memory
details, and thread pools.

 As far as REST API interfaces go, Marvel contains the most powerful set of features
with advanced functionality, such as context-sensitive suggestions and autocompletion
of terms and endpoints (figure D.8).

 At the time of this writing, Marvel is available free for development use. A pro-
duction install of Marvel begins at $1000/year for the first five nodes. Elasticsearch
Marvel is available only as a server-side installation because of its ability to store and
analyze historic data. The manner of installation differs from the previously men-
tioned plugins; Marvel must be installed directly on the server and accessed via a
web browser.

D.6 Sematext SPM: the Swiss Army knife
Sematext has long been known as a provider of cloud-hosted centralized log manage-
ment. In recent years, its product portfolio has expanded into the world of real-time
performance monitoring for distributed systems, including Elasticsearch. Sematext SPM,

Figure D.7 Website: www.elastics.co/overview/marvel/ License: Commercial
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elasticsearch.org/overview/marvel/

417Sematext SPM: the Swiss Army knife
shown in figure D.9, offers performance monitoring, querying capabilities, alerting,
and anomaly detection in a cloud or on-premise offering.

 SPM goes a step beyond the solutions mentioned previously by offering a rich set
of alerts and notification settings for Elasticsearch and across other infrastructure
you may have deployed, such as Apache Kafka, NGINX, Hadoop, MySQL, and others.
Alerts can be email-based, and they can post the alert data to another web service or
even integrate with other monitoring or collaboration applications, such as Atlassian
HipChat or Nagios.

 Still, what appeals to us most about SPM is the all-in-one performance monitoring
dashboard idea, allowing users to see the big picture across every piece of their
deployed architecture or simply drill down into the real-time metrics being gathered

Figure D.8 Autocompletion
of REST calls

Figure D.9 Website: www.sematext.com License: Commercial
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.sematext.com/

418 APPENDIX D Elasticsearch monitoring plugins
on their Elasticsearch cluster (see figure D.10). That being said, SPM isn’t free like
some of the other options we discussed, but the pricing is variable depending on
usage (cpu/hour) and can be found here: http://sematext.com/spm/index.html.

 Sematext SPM is available in the following ways:

■ On-premise installation
■ As-a-service online at www.sematext.com

This appendix covered just a small sample of the existing Elasticsearch monitoring
and management solutions available today. The current batch of available and
community-supported monitoring plugins can be found at www.elastic.co/guide/en/
elasticsearch/reference/current/modules-plugins.html#known-plugins.

 Although Elasticsearch offers a complete and thorough REST API, the ability to
visualize live and historic data is well worth the few minutes needed to install any of
the plugins discussed here.

Figure D.10 Alerts and notifications configuration
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-plugins.html#known-plugins
http://lmenezes.com/elasticsearch-kopf/
http://sematext.com/spm/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-plugins.html#known-plugins

appendix E
Turning search upside

down with the percolator

The Elasticsearch percolator is typically defined as “search upside down” for the
following reasons:

■ You index queries instead of documents. This registers the query in memory,
so it can be quickly run later.

■ You send a document to Elasticsearch instead of a query. This is called perco-
lating a document, basically indexing it into a small, in-memory index. Regis-
tered queries are run against the small index, so Elasticsearch finds out
which queries match.

■ You get back a list of queries matching the document, instead of the other
way around like a regular search.

The typical use case for percolation is alerting. As shown in figure E.1, you can
notify users when new documents (matching their interests) appear.

 As the figure shows, using the get-together site example we’ve used throughout
the book, you could let members define their interests, and you’d save them as per-
colator queries. When a new event is added, you can percolate it against those que-
ries. Whenever there are matches, you can send emails to the respective users to
notify them of new events relevant to their interests.

 Next, we’ll describe how to implement those alerts using the percolator. After
that, we’ll explain how it works under the hood, and then we’ll move on to perfor-
mance and functionality tricks.

419

Licensed to Thomas Snead <n.ordickan@gmail.com>

420 APPENDIX E Turning search upside down with the percolator
E.1 Percolator basics
There are three steps needed for percolation:

1 Make sure there’s a mapping in place for all the fields referenced by the regis-
tered queries.

2 Register the queries themselves.
3 Percolate documents.

Figure E.2 shows these steps.
 We’ll take a closer look at these three steps next, and then we’ll move on to how

the percolator works and what its limitations are.

query:

match:

title: elasticsearch

1

query:

match:

title: python

2

Registered queries:

Percolate:

title: Introduction

to Elasticsearch

Matches: 1

Elasticsearch
New event on

Elasticsearch!

Users

Your

application

Figure E.1 Typical use case: percolating a document enables the application to
send alerts to users if their stored queries match the document.
Licensed to Thomas Snead <n.ordickan@gmail.com>

421Percolator basics
E.1.1 Define a mapping, register queries, then percolate documents

Assume you want to send alerts for any new events about the Elasticsearch percolator.
Before registering queries, you need a mapping for all the fields you run queries on.
In the case of our get-together example, you might already have mappings for groups
and events if you ran populate.sh from the code samples. If you didn’t do that already,
you can download the code samples from https://github.com/dakrone/elasticsearch-
in-action so you can run populate.sh.

 With the data from the code samples in place, you can register a query looking for
Elasticsearch Percolator in the title field. You already have the mapping for title
in place because you ran populate.sh:

% curl -XPUT 'localhost:9200/get-together/.percolator/1' -d '{
 "query": {
 "match": {
 "title": "elasticsearch percolator"
 }
 }
}'

Note that the body of your request is the match query, but to register it, you have to
send it through a PUT request as you would while adding a document. To let Elastic-
search know this isn’t your average document but a percolator query, you have to
specify the .percolator type.

NOTE As you might expect, you can add as many queries as you want, at any
point in time. The percolator is real time, so a new query will account for per-
colation right after it’s added.

PUT events/_mapping

properties:

title:

type: string

Step 1. Add mapping:

Elasticsearch

query:

match:

title: elasticsearch

1

query:

match:

title: python

2

Step 2. Register queries:

Step 3. Percolate:

title: Introduction

to Elasticsearch

Matches: 1

Your

application

Figure E.2 You need a mapping and some registered queries in order to percolate documents.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action

422 APPENDIX E Turning search upside down with the percolator
With your mapping and queries in place, you can start percolating documents. To do
that, you’ll hit the _percolate endpoint of the type where the document would go
and put the contents of the document under the doc field:

% curl 'localhost:9200/get-together/event/_percolate?pretty' -d '{
 "doc": {
 "title": "Discussion on Elasticsearch Percolator"
 }
}'

You’ll get back a list of matching queries, identified by the index name and ID:

 "total" : 1,
 "matches" : [{
 "_index" : "get-together",
 "_id" : "1"
 }]

TIP If you have lots of queries registered in the same index, you might want
only the IDs to shorten the reply. To do that, add the percolate_format=ids
parameter to the request URI.

Next, let’s look at how the percolator works and what kind of limitations you can expect.

E.1.2 Percolator under the hood

In the percolation you just did, Elasticsearch loaded the registered query and ran it
against a tiny, in-memory index containing the document you percolated. If you had
registered more queries, all of them would have been run on that tiny index.

REGISTERING QUERIES

It’s convenient that in Elasticsearch, queries are normally expressed in JSON, just as
documents are; when you register a query, it’s stored in the .percolator type of the
index you point it to. This is good for durability because those queries would be
stored like any other documents. In addition to storing the query, Elasticsearch loads
it in memory so it can be executed quickly.

WARNING Because registered queries are parsed and kept in memory, you
need to make sure you have enough heap on each node to hold those que-
ries. As we’ll see in section E.2.2 of this appendix, one way to deal with large
amounts of queries would be to use a separate index (or more indices) for
percolation. This way you can scale out with percolation independent of the
actual data.

UNREGISTERING QUERIES

To unregister a query, you have to delete it from the index using the .percolator type
and the ID of the query:

% curl -XDELETE 'localhost:9200/get-together/.percolator/1'
Licensed to Thomas Snead <n.ordickan@gmail.com>

423Percolator basics
Because queries are also loaded in memory, deleting a query doesn’t always unregister
the query. A delete-by-ID does remove the percolation query from the memory, but as
of version 1.4, a delete-by-query request doesn’t unregister matching queries from
memory. For that to happen, you’d need to reopen the index; for example:

% curl -XDELETE 'localhost:9200/get-together/.percolator/_query?q=*:*'
right now, any deleted queries are still in memory
% curl -XPOST 'localhost:9200/get-together/_close'
% curl -XPOST 'localhost:9200/get-together/_open'
now they're unregistered from memory, too

PERCOLATING DOCUMENTS

When you percolate a document, that document is first indexed in an in-memory
index; then all registered queries are run against that index to see which ones match.

 Because you can only percolate one Elasticsearch document at a time, as of ver-
sion 1.4 the parent-child queries you saw in chapter 8 don’t work with percolator
because they imply multiple documents. Plus, you can always add new children to the
same parent, so it’s difficult to keep all relevant data in the in-memory index.

 By contrast, nested queries work because nested documents are always indexed
together in the same Elasticsearch document. You can see such an example in the fol-
lowing listing, where you’ll percolate events with attendee names as nested documents.

curl -XPUT 'localhost:9200/get-together/_mapping/nested-events' -d '{
 "properties": {
 "title": { "type": "string" },
 "attendee-name": {
 "type": "nested",
 "properties": {
 "first": { "type": "string" },
 "last": { "type": "string" }
 }
 }
 }
}'
curl -XPUT 'localhost:9200/get-together/.percolator/1' -d '{
 "query": {
 "nested": { "path": "attendee-name",
 "query": {
 "bool": {
 "must": [
 { "match": {
 "attendee-name.first": "Lee"
 }},
 { "match": {
 "attendee-name.last": "Hinman"
 }}
]
 }
 }

Listing E.1 Using percolator with nested attendee names

Defining attendee-name
as nested

Registering a
nested query
Licensed to Thomas Snead <n.ordickan@gmail.com>

424 APPENDIX E Turning search upside down with the percolator
 }
 }
}'
curl 'localhost:9200/get-together/nested-events/_percolate?pretty' -d '{
 "doc": {
 "title": "Percolator works with nested documents",
 "attendee-name": [
 { "first": "Lee", "last": "Hinman" },
 { "first": "Radu", "last": "Gheorghe" },
 { "first": "Roy", "last": "Russo" }
]
 }
}'

As the number of queries grows, percolating a single document requires more CPU.
That’s why it’s important to register cheap queries wherever possible; for example, by
using ngrams instead of wildcards or regular expressions. You can look back at chap-
ter 10 for performance tips, and section 10.4.1 describes the tradeoff between ngrams
and wildcards.

 Percolation performance may be a concern for you, and in the next section we’ll
show you percolator-specific tips depending on your use case.

E.2 Performance tips
For different percolator use cases, there are different things you can do to improve
performance. In this section, we’ll look at the most important techniques and divide
them into two categories:

■ Optimizations to the format of the request or the reply—You can percolate existing
documents, percolate multiple documents in one request, and ask for only the
number of matching queries, instead of the whole list of IDs.

■ Optimizations to the way you organize queries—As we mentioned earlier, you can
use one or more separate indices to store registered queries. Here, you’ll apply
this advice, and we’ll also look at how you can use routing and filtering to
reduce the number of queries being run for each percolation.

E.2.1 Options for requests and replies

In some use cases, you can get away with fewer requests or less data going through the
network. Here, we’ll look at three ways to achieve this:

■ Percolating existing documents
■ Using multi percolate, which is the bulk API of percolation
■ Counting the number of matching queries instead of getting the full list

PERCOLATING EXISTING DOCUMENTS

This works well if what you percolate is what you index, especially if documents are
big. For example, if you index blogs, it might be slow to send every post twice over
HTTP: once for indexing and once for alerting subscribers of posts matching their

This nested document
will match the
registered query.
Licensed to Thomas Snead <n.ordickan@gmail.com>

425Performance tips

ch
)

interests. In such cases, indexing a document and then percolating it by ID, instead of
submitting it again, makes sense.

NOTE Percolating existing documents doesn’t work well for all use cases.
For example, if social media posts have a geo point field, you can register
geo queries matching each country’s area. This way, you can percolate each
post to determine its country of origin and add this information to the post
before indexing it. In such use cases, you need to percolate and then index;
it doesn’t make sense to do it the other way around. The use case to deter-
mine the country of origin is described in the following blog post by Elastic:
www.elastic.co/blog/using-percolator-geo-tagging/.

In the next listing, you’ll register a query for groups matching elasticsearch. Then
you’ll percolate the group with ID 2 (Elasticsearch Denver), which is already indexed,
instead of sending its content all over again.

curl -XPUT 'localhost:9200/get-together/.percolator/2' -d '{
 "query": {
 "match": {
 "name": "elasticsearch"
 }
 }
}'
curl 'localhost:9200/get-together/group/2/_percolate?pretty'

MULTI PERCOLATE API
Whether you percolate existing documents or not, you can do multiple percolations
at once. This works well if you also index in bulks. For example, you can use the perco-
lator for some automated tagging of blog posts by having one query for each tag.
When a batch of posts arrives, you can do as shown in figure E.3:

1 Percolate them all at once through the multi percolate API. Then, in your appli-
cation, append matching tags. Be aware that the percolate API returns only the
IDs of the matching queries. Your application has to map the IDs of the percola-
tion queries to the tags, so it has to map 1 to elasticsearch, 2 to release, and
3 to book. Another approach would be to give the percolation queries the ID
equal to the tag.

2 Finally, index all posts at once through the bulk API we introduced in chapter 10.

Be aware that sending the document twice, once for percolation and once for index-
ing, does imply more network traffic. The advantage would be that you wouldn’t have
to re-index the document if you added the tag using an update. That would be the alter-
native if you indexed the document first, did the percolation by ID, and used the multi
update API to update the indexed documents.

Listing E.2 Percolating an existing group document

Query matching groups about
Elasticsearch; the .percolator ID 2
is not related to group ID 2.

Percolating the
existing Elasticsear
Denver group (ID 2
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.elastic.co/blog/using-percolator-geo-tagging/

426 APPENDIX E Turning search upside down with the percolator
In the following listing you’ll apply what’s described in figure E.3.

curl -XPUT localhost:9200/blog -d '{
 "mappings": {
 "posts": {
 "properties": {
 "title": {
 "type": "string"
 }

Listing E.3 Using the multi percolate and bulk APIs for automated tagging

post1 matches: 1,2

post2 matches: 1,3

Step 1. Multi percolate Step 2. Bulk index

query:

match:

title: elasticsearch

1

query:

match:

title: book

3

query:

match:

title: release

2

Type: percolator

Index: blog

Type: posts

post2

title: New Elasticsearch Book

tags: [elasticsearch, book]

post1

title: New Elasticsearch Release

tags: [elasticsearch, release]

post2

title: New Elasticsearch Book

tags: [elasticsearch, book]

post1

title: New Elasticsearch Release

tags: [elasticsearch, release]

post2

title: New Elasticsearch Book

post1

title: New Elasticsearch Release

Your

application

Figure E.3 Percolator for automated tagging. The multi percolate and bulk APIs reduce the number of requests.
Before step 1, the percolation queries have been indexed. In step 1 you use the multi percolate API to find
matching percolation queries. The application maps the IDs to the tags and adds them to the documents to index.
In step 2 you use the bulk index API to index the documents.

Create the index first, with the
mapping for the title field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

427Performance tips

You can u
bulk

register q
just as

used the
API

Multi per
will

m
fo

perc
docu
 }
 }
 }
}'
echo '{"index" : {"_index" : "blog", "_type" : ".percolator", "_id": "1"}}
{"query": {"match": {"title": "elasticsearch"}}}
{"index" : {"_index" : "blog", "_type" : ".percolator", "_id": "2"}}
{"query": {"match": {"title": "release"}}}
{"index" : {"_index" : "blog", "_type" : ".percolator", "_id": "3"}}
{"query": {"match": {"title": "book"}}}
' > bulk_requests_queries
curl 'localhost:9200/_bulk?pretty' --data-binary @bulk_requests_queries
echo '{"percolate" : {"index" : "blog", "type" : "posts"}}
{"doc": {"title": "New Elasticsearch Release"}}
{"percolate" : {"index" : "blog", "type" : "posts"}}
{"doc": {"title": "New Elasticsearch Book"}}
' > perc_requests
curl 'localhost:9200/_mpercolate?pretty' --data-binary @perc_requests
echo '{"index" : {"_index" : "blog", "_type" : "posts"}}
{"title": "New Elasticsearch Release", "tags": ["elasticsearch", "release"]}
{"index" : {"_index" : "blog", "_type" : "posts"}}
{"title": "New Elasticsearch Book", "tags": ["elasticsearch", "book"]}
' > bulk_requests
curl 'localhost:9200/_bulk?pretty' --data-binary @bulk_requests

Note how similar the multi percolate API is to the bulk API:

■ Every request takes two lines in the request body.
■ The first line shows the operation (percolate) and identification information

(index, type, and for existing documents, the ID). Note that the bulk API uses
underscores like _index and _type, but multi percolate doesn’t (index and type).

■ The second line contains metadata. You’d put the document in there under the
doc field. When you’re percolating existing documents, the metadata JSON
would be empty.

■ Finally, the body of the request is sent to the _mpercolate endpoint. As with the
bulk API, this endpoint can contain the index and the type name, which can
later be omitted from the body.

GETTING ONLY THE NUMBER OF MATCHING QUERIES

Besides the percolate action, the multi percolate API supports a count action, which
will return the same reply as before with the total number of matching queries for
each document, but you won’t get the matches array:

echo '{"count" : {"index" : "blog", "type" : "posts"}}
{"doc": {"title": "New Elasticsearch Release"}}
{"count" : {"index" : "blog", "type" : "posts"}}
{"doc": {"title": "New Elasticsearch Book"}}
' > percolate_requests
curl 'localhost:9200/_mpercolate?pretty' --data-binary @percolate_requests

se the
 API to
ueries,
you’ve
 index

 so far.

colate
return
atches
r each
olated
ment.

Knowing which tag corresponds to which
post, you can index posts with tags, too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

428 APPENDIX E Turning search upside down with the percolator
Using count doesn’t make sense for the tagging use case, because you need to know
which queries match, but this might not be the case everywhere. Let’s say you have an
online shop and you want to add a new item. If you collect user queries and register
them for percolation, you can percolate new items against those queries to predict
how many users will find them while searching.

 In the get-together site example, you could get an idea of how many attendees to
expect for an event before submitting it—assuming you can get each user’s availability
and register time ranges as queries.

 You can, of course, get counts for individual percolations, not just multi percola-
tions. Add /count to the _percolate endpoint:

% curl 'localhost:9200/get-together/event/_percolate/count?pretty' -d '{
 "doc": {
 "title": "Discussion on Elasticsearch Percolator"
 }
}'

Counting will help with performance the more queries match because Elasticsearch
won’t have to load all their IDs in memory and send them over the network. But if you
have many queries to begin with, you might want to look into keeping them in sepa-
rate indices and make sure you run only the relevant ones. We’ll look at how you can
do that next.

E.2.2 Separating and filtering percolator queries

If you’re registering lots of queries and/or percolating lots of documents, you’re
probably looking for scaling and performance tips. Here we’ll discuss the most impor-
tant ones:

■ Keep percolations in a separate index. This lets you scale them separately from the
rest of your data, especially if you store these indices in a separate Elastic-
search cluster.

■ Reduce the number of queries run for each percolation. Strategies include routing and
filtering.

USING SEPARATE INDICES FOR PERCOLATOR

When you register queries in a separate index, the thing to keep in mind is to define a
mapping for all the fields you want to query. In the get-together example, if you want
percolator queries to run on the title field, you need to define it in the mapping.
You can do this while creating the index, at which time you can also specify other
index-specific settings, such as the number of shards:

% curl -XPUT 'localhost:9200/attendance-percolate' -d '{
 "settings": {
 "number_of_shards": 4
 },
 "mappings": {
 "event": {
Licensed to Thomas Snead <n.ordickan@gmail.com>

429Performance tips
 "properties": {
 "title": {
 "type": "string"
 }
 }
 }
 }
}'

Your new attendance-percolate index has four shards, compared to the existing get-
together index with two. This means you can potentially run a single percolation on
up to four nodes. Such an index can also be stored in a separate Elasticsearch cluster
so that percolations don’t take CPU away from the queries you’d run on the get-
together index.

 Once your separate index is set up with the mapping, you’d register queries and
run percolations in the same way you did in section E.1.1:

% curl -XPUT 'localhost:9200/attendance-percolate/.percolator/1' -d '{
 "query": {
 "match": {
 "title": "elasticsearch percolator"
 }
 }
}'
% curl 'localhost:9200/attendance-percolate/event/_percolate?pretty' -d '{
 "doc": {
 "title": "Discussion on Elasticsearch Percolator"
 }
}'

Most of the scaling strategies you saw in chapter 9 apply to percolator as well. You can
use multiple indices—for example, one per customer—to make sure you run only the
queries that are relevant for each percolation. You can also use aliases to limit the cus-
tomer in your query; that way you overcome the too-many-indices problem if each cus-
tomer gets their own index.

USING PERCOLATOR WITH ROUTING

Percolator also supports routing, another scaling strategy discussed in chapter 9.
Routing works well when you have many nodes as well as many users running many
percolations. Routing lets you keep each user’s queries in a single shard, avoiding the
excessive chatter between nodes shown in figure E.4.

NOTE The main downside of routing is that shards might become imbal-
anced because queries won’t be distributed randomly as they are by default.
If you have some users with more queries than others, their shards might
become bigger and thus more difficult to scale. See chapter 9 for more
information.
Licensed to Thomas Snead <n.ordickan@gmail.com>

430 APPENDIX E Turning search upside down with the percolator
To use routing, you’d register queries with a routing value:

% curl -XPUT 'localhost:9200/\
attendance-percolate/.percolator/1?routing=radu' -d '{
 "query": {
 "match": {
 "title": "Elasticsearch Aggregations"
 }
 }
}'

Then you’d percolate with routing by specifying the same value:

% curl 'localhost:9200/\
attendance-percolate/event/_percolate?routing=radu&pretty' -d '{
 "doc": {
 "title": "Introduction to Aggregations"
 }
}'

Or you’d percolate against all registered queries by omitting the routing value. Beware
that you’ll lose the advantage of sending the queries to appropriate shards only:

% curl 'localhost:9200/attendance-percolate/event/_percolate?pretty' -d '{
 "doc": {
 "title": "Introduction to Aggregations"
 }
}'

FILTERING REGISTERED QUERIES

Percolator performance depends directly on the number of queries being run, and fil-
tering can help keeping this number at bay.

 Typically, you’d add some metadata next to the query and filter on it. The names
for these fields can be chosen freely. Because these fields are metadata fields and not

Percolate:

without routing value

Percolate:

with routing=user1

Node 1

Shard 0 Shard 1

Node 2

Shard 2 Shard 3

Node 1

Shard 0 Shard 1

Node 2

Shard 2 Shard 3

Figure E.4 A percolate request with routing reduces the number of queries and also hits fewer shards.
Licensed to Thomas Snead <n.ordickan@gmail.com>

431Performance tips
part of the documents to match, these fields aren’t added to the mapping. For exam-
ple, you can tag queries for events:

% curl -XPUT 'localhost:9200/\
attendance-percolate/.percolator/1' -d '{
 "query": {
 "match": {
 "title": "introduction to aggregations"
 }
 },
 "tags": ["elasticsearch"]
}

Then, when percolating documents, add a filter for that tag to make sure only the rel-
evant queries are being run:

% curl 'localhost:9200/attendance-percolate/event/_percolate?pretty' -d '{
 "doc": {
 "title": "nesting aggregations"
 },
 "filter": {
 "term": {
 "tags": "elasticsearch"
 }
 }
}'

Alternatively, you can filter on the query itself. This requires a mapping change because
the query object isn’t indexed by default, as if the mapping for the .percolator type
looked like this:

".percolator": {
 "properties": {
 "query": {
 "type": "object",
 "enabled": false
 }
 }
}

TIP You can find more information about objects and their options in chap-
ter 7, section 7.1.

In the next listing, you’ll change the mapping to enable the query object and then use
the filter on the query string itself.

curl -XPUT 'localhost:9200/smart-percolate' -d '{
 "mappings": {
 "event": {

Listing E.4 Filtering queries by their content
Licensed to Thomas Snead <n.ordickan@gmail.com>

432 APPENDIX E Turning search upside down with the percolator

.

 "properties": {
 "title": { "type": "string" }
 }
 },
 ".percolator": {
 "properties": {
 "query": { "type": "object", "enabled": true }
 }
 }
 }
}'
curl -XPUT 'localhost:9200/smart-percolate/.percolator/1' -d '{
 "query": {
 "match": {
 "title": "Elasticsearch Aggregations"
 }
 }
}'
curl 'localhost:9200/smart-percolate/event/_percolate?pretty' -d '{
 "doc": {
 "title": "Nesting Elasticsearch Aggregations"
 },
 "filter": {
 "query": {
 "match": {
 "query.match.title": "Elasticsearch"
 }
 }
 }
}'

There are advantages and disadvantages to both methods. Metadata filtering works well
when you have clear categories to filter on. On the other hand, filtering on the query
text might work like a heuristic mechanism when metadata isn’t available or reliable.

 You may be wondering why you wrapped a query in a filter in listing F.4. It’s
because you didn’t need the score when filtering registered queries for this use case.
As you saw in chapter 4, filters are faster because they don’t calculate scores and are
cacheable. But there are use cases where the score—or other features, such as high-
lighting or aggregations—turns out to be useful during percolation. We’ll discuss such
use cases next.

E.3 Functionality tricks
Just as you can filter registered queries based on their metadata, you can query on this
metadata and use the score to decide which query is more relevant. In this section,
we’ll look at how this works and also at using aggregations to get better insights on
matching queries.

NOTE Remember that for queries and aggregations, you’ll run them on the
registered queries, not on the percolated documents. This means you’ll get
ranking and statistics on the queries, not on the documents.

Create a new index with
the title field in the event
mapping and the query
object enabled.

Add a
query about
Elasticsearch
aggregations

Percolate an event about
aggregations, but filter only
queries about Elasticsearch.
Licensed to Thomas Snead <n.ordickan@gmail.com>

433Functionality tricks
If the logic of querying queries sounds a bit twisted, let’s start with another functional-
ity trick: highlighting. This one is more straightforward because the highlighted text
comes from the percolated document.

E.3.1 Highlighting percolated documents

Highlighting will let you know which words from the document you’re percolating
matched the query. In appendix C we discussed the features of highlighting in the
context of regular queries, but all of them work with the percolator, too.

 If you ran listing F.4, you can try a highlighted percolation by adding a highlight
section to your percolate request. You should also specify a size value in order to
place a limit on how many queries to highlight:

% curl 'localhost:9200/smart-percolate/event/_percolate?pretty' -d '{
 "doc": {
 "title": "Nesting Elasticsearch Aggregations"
 },
 "highlight": {
 "fields": {
 "title": {}
 }
 },
 "size": 2
}'

For each query, you’ll see the matching terms from the percolated document:

 "_index" : "smart-percolate",
 "_id" : "1",
 "highlight" : {
 "title" : ["Nesting Elasticsearch Aggregations"]
 }

Scoring, on the other hand, works “upside down,” just like the percolator itself: que-
ries are scored, not the percolated documents.

E.3.2 Ranking matching queries

Let’s take the use case of contextual advertising. A user is looking at blog posts on
your website, and you have some ads registered as queries. During page load, you can
percolate the post against those queries to see which ads are appropriate for the dis-
played content. This allows you to show tech ads for tech posts, holiday ads for holiday
posts, and so on. But you have limited ad space, so which ads are you going to show?

 How about sorting ads by some criterion, like the revenue you get for each ad?
Then you can use a size value to get back only as many ads as you can display.

 To sort registered queries by the value of a field, you can use the function score
query, which was introduced in chapter 6. In the following listing, you’ll use it to sort
ads by the value of ad_price.
Licensed to Thomas Snead <n.ordickan@gmail.com>

434 APPENDIX E Turning search upside down with the percolator
curl -XPUT 'localhost:9200/blog-ad/' -d '{
 "mappings": {
 "posts": {
 "properties": {
 "text": {
 "type": "string"
 }
 }
 }
 }
}'
curl -XPUT 'localhost:9200/blog-ad/.percolator/1' -d '{
 "query": {
 "match": {
 "text": "new cars"
 }
 },
 "ad_price": 5.4
}'
curl -XPUT 'localhost:9200/blog-ad/.percolator/2' -d '{
 "query": {
 "match": {
 "text": "used cars"
 }
 },
 "ad_price": 2.1
}'

curl 'localhost:9200/blog-ad/posts/_percolate?pretty' -d '{
 "doc": {
 "text": "This post is about cars"
 },
 "query": {
 "function_score": {
 "field_value_factor": {
 "field": "ad_price"
 }
 }
 },
 "size": 5,
 "sort": "_score"
}'

Note that the function score query doesn’t do any filtering—although that’s possi-
ble, too—it simply defines the _score value, which is used for sorting.

 At this point, you might be wondering why you sort on _score and not on the
ad_price field directly. There are two reasons:

■ Percolator supports sorting only on _score (as of version 1.4).
■ In practice, you probably want to combine multiple sort criteria.

Listing E.5 Sorting registered queries by a metadata value

Obligatory mapping for the text field
in the posts, on which queries will run

Add a price
metadata field to
the stored query.

Function score query makes
the score equal to the ad price

How many ads
you want to show

Specify that you sort on score,
which is now the ad price.
Licensed to Thomas Snead <n.ordickan@gmail.com>

435Functionality tricks
In the case of ads, you might want to throw a random value into the mix to make
sure you show all ads eventually; just increase the odds for the expensive ones. The
function score query allows you to define different weights for different criteria and
combine them.

 Finally, you might want to get more insight about how matching queries are dis-
tributed. You can get this through aggregations.

E.3.3 Aggregations on matching query metadata

Let’s say you’re responsible for an online shop’s search feature. When a new product
is added, you want to make sure the description matches searches of users normally
looking for this type of product.

 If you register user searches as percolator queries, you can percolate a product
document before submitting it to predict how often that product would show up in
searches. If the product shows in too few or too many searches, it could be a problem.
In these situations, you can get more information about the distribution of these
matching queries by running an aggregation on a metadata field or even the actual
query text.

 In the listing that follows, you’ll prepare and then run a percolation on user
searches, aggregating on the query terms. In this example, the term cheap will appear
in the top terms for matching queries, suggesting that price is important for users
looking at this type of product.

curl -XPUT 'localhost:9200/shop' -d '{
 "mappings": {
 "items": {
 "properties": {
 "name": { "type": "string" }
 }
 },
 ".percolator": {
 "properties": {
 "query": { "type": "object", "enabled": true }
 }
 }
 }
}'
curl -XPUT 'localhost:9200/shop/.percolator/1' -d '{
 "query": {
 "match": {
 "name": "cheap PC Linux"
 }
 }
}'
curl -XPUT 'localhost:9200/shop/.percolator/2' -d '{
 "query": {
 "match": {
 "name": "cheap PC"

Listing E.6 Using aggregations to get matching query metadata and term statistics

Queries will run on the
name field, so you define
it in the mapping.

Enabling the query
object will let you
aggregate on
query terms.

Registering some
queries that look
like user searches
Licensed to Thomas Snead <n.ordickan@gmail.com>

436 APPENDIX E Turning search upside down with the percolator
 }
 }
}'
curl -XPUT 'localhost:9200/shop/.percolator/3' -d '{
 "query": {
 "match": {
 "name": "Mac Pro latest"
 }
 }
}'
curl 'localhost:9200/shop/items/_percolate/count?pretty' -d '{
 "doc": {
 "name": "PC with preinstalled Linux"
 },
 "aggs": {
 "top_query_terms": {
 "terms": { "field": "query.match.name" }
 }
 }
}'

The aggregation part of the response for the query would be like this:

 "aggregations" : {
 "top_query_terms" : {
 "doc_count_error_upper_bound" : 0,
 "sum_other_doc_count" : 0,
 "buckets" : [{
 "key" : "cheap",
 "doc_count" : 2
 }, {
 "key" : "pc",
 "doc_count" : 2
 }, {
 "key" : "linux",
 "doc_count" : 1
 }]
 }
 }

If cheap is the top term here, and the computer you’re adding is indeed cheap, it
would be good to add it to the description so that people searching for this type of
product will find it.

 The key thing to remember here is that as with most of this appendix, features like
aggregations work on registered queries and not on the percolated documents. We
don’t call percolation “search upside down” for nothing!

Registering some
queries that look like
user searches

Percolating this new
product will match the
first two queries.

Aggregation running on query
text shows that cheap and pc
appear twice and linux once.
Licensed to Thomas Snead <n.ordickan@gmail.com>

appendix F
Using suggesters

for autocomplete and
did-you-mean functionality

You now expect search engines not only to return good results but also to improve
your queries. Take Google, for instance: if you make a typo, Google tells you about
it and recommends a correction or even runs it directly, as shown in figure F.1.

Google also tries to prevent typos by offering autocomplete, which also makes
queries faster and shows you topics that you might find interesting, as shown in
figure F.2.

Figure F.1 Spell checking by Google

Figure F.2 Autocomplete on Google
437

Licensed to Thomas Snead <n.ordickan@gmail.com>

438 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
Elasticsearch offers both did-you-mean (DYM) and autocomplete functionality through
the Suggesters module. The point of a suggester is to take a given text and return bet-
ter keywords.

 In this appendix we’ll cover four types of suggesters:

■ Term suggester—For each term in the provided text, it suggests keywords from
the index. It works well for DYM on short fields, such as tags.

■ Phrase suggester—You can think of it as an extension of the term suggester that
provides DYM alternatives for the whole text instead of individual terms. It
accounts for how often terms appear next to each other, making it especially
better for longer fields, such as product descriptions.

■ Completion Suggester—This provides autocomplete functionality based on term
prefixes. It works with in-memory structures, making it faster than the prefix
queries you saw in chapter 4.

■ Context Suggester—This is an extension of the Completion Suggester that allows
you to filter alternatives based on terms (categories) or geo-point locations.

NOTE Work is being done on a new suggester based on the NRT suggester.
More options will be included like geo distance and filters. This new sug-
gester is planned for version 2.0; the current suggesters will keep working as
described here. More information on the new suggester can be found here:
https://github.com/elastic/elasticsearch/issues/8909.

F.1 Did-you-mean suggesters
Term and phrase suggesters can help you avoid those nasty “0 results found” pages by
eliminating typos and/or showing more popular variations of the original keywords.
For example, you may suggest Lucene/Solr for Lucene/Solar.

 You can leave it up to the user to run the suggester query:

 (Did you mean Lucene/Solr?)

Or you can run it automatically:

 (Showing results for Lucene/Solr. Click here for Lucene/Solar).

Typically, you’d run the suggested query automatically if the original query produces
no results or just a few results with tiny scores.

 Before we dive into the details of how you’d use the term and phrase suggesters,
let’s look at how they compare:

■ The term suggester is basic and fast, working well when you care only about the
occurrence of each word, like when you search code or short texts.

■ The phrase suggester, on the other hand, takes the input text as a whole. This
is slower and more complicated, as we’ll see in a bit, but also works much bet-
ter for natural languages or other places where you need to consider the
sequence of words, like product names. For example, apple iphone is probably
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/8909

439Did-you-mean suggesters
a better suggestion than apple phone, even if the word phone appears more
often in the index.

Both the term and the phrase suggester use Lucene’s SpellChecker module at their
core. They look at terms from the index to come up with suggestions, so you can easily
add DYM functionality on top of existing data if your data can be trusted. Otherwise, if
your data would often contain typos—for example, if you’re indexing social media
content—you might be better off maintaining a separate index with suggestions as a
“dictionary.” That separate index could contain queries that are run often and return
results that are typically clicked on.

F.1.1 Term suggester

The term suggester takes the input text, analyzes it into terms, and then provides a list
of suggestions for each term. This process is best illustrated in listing F.1, where you
provide suggestions for group members of the get-together site example you’ve been
running throughout the book.

 The term suggester’s structure applies to other types of suggesters as well:

■ Suggest options go under a suggest element at the root of the JSON—at the
same level as query or aggregations, for example.

■ You can have one or more suggestions, each having a name, as you can with the
aggregations we discussed in chapter 7. In listing F.1 you have dym-members.

■ Under each suggestion, you provide the text and the suggestion type; in this
case, term. Under it, you’d put type-specific options. In the term suggester’s
case, the only mandatory option is the field to use for getting suggestions. In
this case, you’ll use the members field.

NOTE For listing F.1 to work properly, you must download the code samples
from https://github.com/dakrone/elasticsearch-in-action and run populate.sh
to index some sample data.

curl localhost:9200/get-together/group/_search?pretty -d '{
 "query": {
 "match": {
 "members": "leee daneil"
 }
 },
 "suggest": {
 "dym-members": {
 "text": "leee daneil",
 "term": {
 "field": "members"
 }
 }
 }
}'

Listing F.1 Using the term suggester to correct member typos

Each suggestion
has a name.

Input text from which to
generate suggestions.

Suggester type

Field to get
suggestions from
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/dakrone/elasticsearch-in-action

440 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
reply snippet
 "hits" : {
 "total" : 0,
 "max_score" : null,
 "hits" : []
 },
 "suggest" : {
 "dym-members" : [{
 "text" : "leee",
 "offset" : 0,
 "length" : 4,
 "options" : [{
 "text" : "lee",
 "score" : 0.6666666,
 "freq" : 3
 }]
 }, {
 "text" : "daneil",
 "offset" : 5,
 "length" : 6,
 "options" : [{
 "text" : "daniel",
 "score" : 0.8333333,
 "freq" : 1
 }]
 }]

If you need only suggestions and not the query results, you can use the _suggest end-
point, skip the query object, and only pass the suggest object as a payload without the
surrounding suggest keyword:

% curl localhost:9200/get-together/_suggest?pretty -d '{
 "dym-members": {
 "text": "leee daneil",
 "term": {
 "field": "members"
 }
 }
}'

This is useful when you want to check for missing terms before running the query, allow-
ing you to correct the keywords instead of returning a potential “no results found” page.

RANKING SUGGESTIONS

By default, the term suggester offers a number of suggestions (up to the value of size)
for each provided term. Suggestions are sorted by how close they are to the provided
text. For example, if you provide Willian you’ll get back William and then Williams.
Of course, you can only get back these two values if they are available terms in the
index. Also, Elasticsearch will provide suggestions only if the initial term Willian
doesn’t exist in the index.

Search doesn’t return any
hits because of the typos.

For each term in
the input text,
you get an array
of suggestions.
Licensed to Thomas Snead <n.ordickan@gmail.com>

441Did-you-mean suggesters
 This won’t be ideal if you’re searching though documents about Formula 1, where
Williams is more likely to be searched for than either William or Willian. And you
probably want to show Williams even if Willian actually exists in the index.

 As you might expect, you can change all these. You can rank popular words higher
by changing sort to frequency instead of the default score. Finally, you can change
suggest_mode to decide when to show suggestions. Compared to the default value of
missing, popular will come up with terms with higher frequencies than the one pro-
vided, and always will come up with suggestions anyway.

 In the next listing, you’ll get only the most popular suggestion for the event
attendee mick.

curl localhost:9200/get-together/_suggest?pretty -d '{
 "dym-attendees": {
 "text": "mick",
 "term": {
 "field": "attendees",
 "size": 1,
 "sort": "frequency",
 "suggest_mode": "popular"
 }
 }
}'

CHOOSING WHICH TERMS TO BE CONSIDERED

In listing F.2 you got the winning suggestion, but who competed for that one spot?
Let’s see how the term suggester works in order to understand which suggestions were
considered in the first place.

 As we mentioned before, the term suggester uses Lucene’s SpellChecker module.
This returns terms from the index at a maximum edit distance from the provided
term. You saw an example of how edit distance works in the fuzzy query in chapter 4;
for example, to get from mik to mick you need to add a letter, so the edit distance
between them is 1.

 Like the fuzzy query, the term suggester has a number of options that let you bal-
ance flexibility and performance:

■ max_edits—This limits the edit distance from the provided term to the terms
that might be suggested. For performance reasons, this is limited to values of 1
and 2, with 2 being the default value.

■ prefix_length—How much of the beginning of the word to assume is correct.
The bigger the prefix, the faster Elasticsearch will find suggestions, but you also
have a higher risk of typos in that prefix. The default for prefix_length is 1.

Listing F.2 Getting the most popular suggestion for a term

Get only the suggestion
with the highest score.

Score depends on the suggestion's
frequency more than on how close
it is from the given term

Provide only suggestions with higher
frequencies than the given term.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://mustache.github.io/

442 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
If you’re concerned about performance, you might also want to tweak these options:

■ min_doc_freq, which limits candidate suggestions to popular enough terms
■ max_term_freq, which excludes popular terms in the input text from being cor-

rected in the first place

You can find more details about them in the documentation at www.elastic.co/guide/
en/elasticsearch/reference/current/search-suggesters-term.html.

 If you’re more concerned about accuracy, take a look at the phrase suggester as
well. It should provide better suggestions, especially on larger fields.

F.1.2 Phrase suggester

The phrase suggester also provides did-you-mean functionality, like the terms sug-
gester, but instead of giving suggestions for individual terms, it gives suggestions for
the overall text. This has a couple of advantages when you have multiple words in
your search.

 First, there’s less client-side logic to apply. For example, if you’re using the terms
suggester for the input text abut using elasticsarch, you’ll probably get about as a
suggestion for abut and elasticsearch for elasticsarch. Your application has to fig-
ure out that using has no suggestion and build up a message like “did you mean:
about using elasticsearch.”

 As you’ll see in the following listing, the phrase suggester gives you about using
elasticsearch out of the box. Plus, you can use highlighting to show the user which
of the original terms have been corrected.

curl localhost:9200/get-together/_suggest?pretty -d '{
 "dym-attendees": {
 "text": "abut using elasticsarch",
 "phrase": {
 "field": "description",
 "highlight": {
 "pre_tag": "",
 "post_tag": ""
 }
 }
 }
}'
reply snippet
 "dym-attendees" : [{
 "text" : "abut using elasticsarch",
 "offset" : 0,
 "length" : 23,
 "options" : [{
 "text" : "about using elasticsearch",
 "highlighted" : "about using elasticsearch",
 "score" : 0.004515128
 }, {

Listing F.3 Phrase suggester working with highlighting

Suggester type
changes to phrase

Highlighting needs tags, like the
ones you saw in appendix C.

Suggestions for
the overall text,

ranked and
highlighted
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-term.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-suggesters-term.html

443Did-you-mean suggesters
 "text" : "about using elasticsarch",
 "highlighted" : "about using elasticsarch",
 "score" : 0.002511514
 }, {
 "text" : "abut using elasticsearch",
 "highlighted" : "abut using elasticsearch",
 "score" : 0.0022977828
 }]
 }]

Then you can expect suggestions to be better ranked, especially if you’re searching
natural language, such as book content. The phrase suggester does that by adding
new logic on top of the terms suggester to weigh candidate phrases based on how
terms occur together in the index. This ranking technique is called ngram-language
model, and it works if you have a shingle field with the same content as the field you’re
searching on. You can get shingles by using the shingle token filter that we discussed
in chapter 5; remember, this means you have to configure shingles in the mapping to
create the index appropriately.1

The shingles field is used for ranking suggestions by checking how often suggested
words occur next to each other, as shown in figure F.3.

 As you might expect, there are many options that allow you to configure much of
this process, and we’ll discuss the most important ones here:

■ How candidate generators come up with candidate terms
■ How overall phrases get scored based on the shingles field
■ How shingles of different sizes influence a suggestion’s score
■ How to include and exclude suggestions based various criteria, such as score or

whether they’ll actually return results

More on n-grams, shingles, and n-gram models
An n-gram is defined as a contiguous sequence of n items from a given sequence of
text or speech.1 These items could be letters or words, and in Elasticsearch we say
n-grams for letter n-grams and shingles for word n-grams.

An n-gram model uses frequencies of existing word n-grams (shingles, in Elastic-
search money) to determine the likelihood of different words existing next to each
other. For example, a speech recognition device is more likely to encounter yellow
fever than hello fever, assuming it finds more yellow fever than hello fever
shingles in the training data.

The phrase suggester uses n-gram models to score candidate phrases based on the
occurrence of consecutive words in a shingle field. You can expect a phrase sugges-
tion like John has yellow fever to be scored higher than John has hello fever.

1 https://en.wikipedia.org/wiki/N-gram

Suggestions for
the overall text,
ranked and
highlighted
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://en.wikipedia.org/wiki/N-gram

444 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
CANDIDATE GENERATORS

The responsibility of the candidate generators is to come up with a list of possible
terms based on the terms in the provided text. As of version 1.4, there’s only one type
of candidate generator, called direct_generator. It works in a similar way to the
terms suggester in that it finds suggestions for every term of the input text.

 The direct generator has similar options to the term suggester, like max_edits or
prefix_length. But the phrase suggester supports more than one generator, and it also
allows you to specify an analyzer that is applied to input terms before they get spell
checked (pre-filter), and one that is applied to suggested terms before they are returned.

 Having multiple generators and filters lets you do some neat tricks. For instance, if
typos are likely to happen both at the beginning and end of words, you can use multi-
ple generators to avoid expensive suggestions with low prefix lengths by using the
reverse token filter, as shown in figure F.4.

 You’ll implement what’s shown in figure F.4 in listing F.4:

■ First, you’ll need an analyzer that includes the reverse token filter.
■ Then you’ll index the correct product description in two fields: one analyzed

with the standard analyzer and one with the reverse analyzer.

When you run the suggester, you can specify two candidate generators: one running
on the standard field and one on the reversed field, which will make use of the reverse
pre- and post-filters.

“mick sits”
“mike shows”

Documents

mick

sits

mike

shows

Unigrams

Term

candidates

Phrase

suggestions

mick

mick sits

sits

mike

mike shows

shows

Shingles

and unigrams

Input text

mik shows

mik −−> mick

Term

candidates

mik −−> mike

mick shows

Phrase

suggestions

mike shows

Ranked suggestions

1. mike shows

2. mick shows

Figure F.3 Candidate suggestions are ranked based on the shingles field.
Licensed to Thomas Snead <n.ordickan@gmail.com>

445Did-you-mean suggesters
curl -XPUT localhost:9200/shop -d '{
 "settings": {
 "analysis": {
 "filter": {
 "reversing": { "type": "reverse" }
 },
 "analyzer": {
 "standard_reverse": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["lowercase", "reverse"]
 }
 }
 }
 },
 "mappings": {
 "products": {
 "properties": {
 "product": {
 "type": "string",
 "fields": {
 "reversed": {

Listing F.4 Using the reverse token filter in one of the two generators

“iphone accessories”

Document

Standard

field

Direct

generators

iphone

accessories

accessorie −−> accessories

Reversed

field

enohpi

seirossecca

Direct

generators

enofi −−> enophi

Reverse pre-filter

ifone −−> enofi

Reverse post-filter

enophi −−> iphone

Input text

“ifone accessorie”

Phrase

suggestion

“iphone accessories”

Figure F.4 Using filters and two direct generators to correct both prefix and suffix typos

Reverse
token filter

Analyzer similar to the
standard analyzer, except
it reverses tokens

product field is analyzed
with the standard analyzer,
product.reversed is reversed.
Licensed to Thomas Snead <n.ordickan@gmail.com>

446 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
 "type": "string",
 "analyzer": "standard_reverse"
 }
 }
 }
 }
 }
 }
}'
curl -XPUT localhost:9200/shop/products/1 -d '{
 "product": "iphone accessories"
}'
curl -XPOST localhost:9200/shop/_suggest?pretty -d '{
 "dym": {
 "text": "ifone accesorie",
 "phrase": {
 "field": "product",
 "max_errors": 2,
 "direct_generator": [
 {
 "field": "product",
 "prefix_length": 3
 },
 {
 "field": "product.reversed",
 "prefix_length": 3,
 "pre_filter": "standard_reverse",
 "post_filter": "standard_reverse"
 }
]
 }
 }
}'
reply snippets
 "text" : "iphone accessories",
 "score" : 0.48023444
 "text" : "iphone accesorie",
 "score" : 0.38765374
 "text" : "ifone accessories",
 "score" : 0.35540017

USING A SHINGLES FIELD FOR SCORING CANDIDATES

Now that you have good candidates, you’ll use a shingles field for ranking. In list-
ing F.5, you’ll use the shingle token filter to define another multi-field for the shop
product descriptions.

 You’ll have to decide how many consecutive words to allow in a shingle, or the
shingle size. This is usually a tradeoff between performance and accuracy: lower-level
shingles are needed in order to get partial matches, like boosting a suggestion for
United States based on an indexed text saying United States of America. Higher-
level shingles are good for boosting exact matches of longer texts such as United
States of America above United States of Americas. The problem is, the more shin-
gle sizes you add, the bigger your index gets, and suggestions will take longer.

max_errors dictates how
many corrections are
allowed in a suggestion.

Regular generator
corrects suffixes,
reversed generator
corrects prefixes

Both terms
are corrected
in suggestions.
Licensed to Thomas Snead <n.ordickan@gmail.com>

447Did-you-mean suggesters
 A good balance for most use cases is to index sizes from 1 to 3. You can do it by set-
ting min_shingle_size to 2 and max_shingle_size to 3, because the shingle filter
outputs unigrams by default.

 With the shingles field in place, you need to specify it as the field of your
phrase suggester, whereas the regular description field will go under each candi-
date generator.

curl -XPUT localhost:9200/shop2 -d '{
"settings": {
 "analysis": {
 "filter": {
 "shingle": {
 "type": "shingle",
 "min_shingle_size": 2,
 "max_shingle_size": 3
 }
 },
 "analyzer": {
 "shingler": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["lowercase", "shingle"]
 }
 }
 }
},
"mappings": {
 "products": {
 "properties": {
 "product": {
 "type": "string",
 "fields": {
 "shingled": {
 "type": "string",
 "analyzer": "shingler"
 }
 }
 }
 }
 }
}}'
curl -XPUT localhost:9200/shop2/products/1 -d '{
 "product": "iphone accessories"
}'
curl localhost:9200/shop2/_suggest?pretty -d '{
 "dym": {
 "text": "ifone accesorie",
 "phrase": {
 "field": "product.shingled",
 "max_errors": 2,
 "direct_generator": [{
 "field": "product"

Listing F.5 Using a shingles field to get better ranking for suggestions

Shingle analyzer
that outputs
unigrams,
bigrams, and
trigrams

Field using the
shingle analyzer

Shingle field is used
for scoring, unigram
field for candidates
Licensed to Thomas Snead <n.ordickan@gmail.com>

448 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
 }]
 }
 }
}'
reply snippet
 "text" : "iphone accessories",
 "score" : 0.44569767
 "text" : "ifone accessories",
 "score" : 0.16785859
 "text" : "iphone accesorie",
 "score" : 0.16785859

USING SMOOTHING MODELS TO SCORE SHINGLES OF DIFFERENT SIZES

Take two possible suggestions: Elasticsearch in Action and Elasticsearch is
Auction. If the index contains the trigram Elasticsearch in Action, you’d expect
this suggestion to rank higher. But if term frequencies are the only criterion, and
the unigram auction appears many times in the index, Elasticsearch is Auction
might win.

 In most use cases, you want the score to be given not only by the frequency of a shin-
gle but also by the shingle’s size. Luckily, there are smoothing models that do just that. By
default, Elasticsearch uses an algorithm called Stupid Backoff in the phrase suggester.
The name implies that it’s simple, but it works well:2 it takes the highest order shingles
as the reference—trigrams in the case of listing F.5. If no trigrams are found, it looks for
bigrams but multiplies the score by 0.4. If no bigrams are found, it goes to unigrams but
lowers the score once again by 0.4. The whole process is shown in figure F.5.

2 Stupid Backoff was the original name, because authors assumed such a simple algorithm couldn’t possibly work.
It turns out it works, but the name stuck. More details here: www.aclweb.org/anthology/D07-1090.

Score gap increases
compared to listing F.4,
because the first suggestion
matches a bigram

elasticsearch

is auction

elasticsearch

in action

Winner!

elasticsearch in action −> 1

elasticsearch in −> 1

in action −> 1

elasticsearch −> 1

...

is −> 1

auction −> 3

TOTAL: 50

Term frequencies

0.16x1/50

No trigrams found.

Discounting score by 0.4

0.16x1/50

1/50

0.16x3/50

Total: 0.8/50

No bigrams found.

Discounting score by 0.4x0.4

Figure F.5 Stupid Backoff discounts the score of lower-order shingles.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.aclweb.org/anthology/D07-1090

449Did-you-mean suggesters
That 0.4 multiplier can be configured through the discount parameter:

% curl localhost:9200/shop2/_suggest?pretty -d '{
 "dym": {
 "text": "ifone accesories",
 "phrase": {
 "field": "product.shingled",
 "smoothing": {
 "stupid_backoff": {
 "discount": 0.5
 }
 },
 "direct_generator": [{
 "field": "product"
 }]
 }
 }
}'

NOTE Usually, Stupid Backoff works well, but there are other smoothing mod-
els available, such as Laplace smoothing or linear interpolation. For more infor-
mation about them, go to www.elastic.co/guide/en/elasticsearch/reference/
current/search-suggesters-phrase.html#_smoothing_models.

EXCLUDING SUGGESTIONS BASED ON DIFFERENT CRITERIA

Besides ranking suggestions based on ngram-language models, you can include or
exclude them based on certain criteria. Back in listing F.4, you saw max_errors, which
allows only suggestions that correct a maximum number of terms. It’s usually recom-
mended to set max_errors to a low value (it defaults to 1); otherwise, the suggest
request will take a long time because it has to score too many suggestions.

 You can also include or exclude possible suggestions based on their score or whether
they would actually produce results, should you run a query with the suggested text.

 For filtering by score, the main option is confidence—the higher the value, the
more confident you are that the input text doesn’t need suggestions. It works like this:
the phrase suggester scores the input text as well as possible suggestions. Suggestions
with a score less than the input text’s score multiplied by confidence (which defaults
to 1) are eliminated. Increasing the value improves performance and helps you get
rid of embarrassing suggestions like “Did you mean lucene/solar?” On the other hand,
a value that’s too high might miss providing suggestions for “solr panels.”

 confidence works hand in hand with real_word_error_likelihood, which
should describe the proportion of misspelled words in the index itself (defaults to
0.95). Possible suggestions have their score multiplied by this value, so lowering it
reduces chances of returning a misspelled word as a suggestion, because the score of
that suggestion is more likely to be lower than that of the input text (multiplied by
confidence). If you set it too low though, good suggestions might be missed as well, so
it’s usually best to set real_word_error_likelihood to a value that describes the real
likelihood of a misspelling in the index.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-phrase.html#_smoothing_models
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-phrase.html#_smoothing_models

450 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
 Finally, what happens if the query you suggest won’t return any results? That would
be pretty bad, but luckily you can have Elasticsearch verify that for each suggestion. In
the following listing, you’ll use the collate option to have Elasticsearch return only
suggestions that return results. You need to specify a query, and in that query you’ll
refer to the suggestion itself as the {{suggestion}} variable. Note how suggestions
such as ifone accessories are removed from the list.

curl localhost:9200/shop/_suggest?pretty -d '{
 "dym-description": {
 "text": "ifone accesorie",
 "phrase": {
 "field": "product",
 "max_errors": 2,
 "collate": {
 "query": {
 "match": {
 "{{field_name}}": {
 "query": "{{suggestion}}",
 "operator": "AND"
 }
 }
 },
 "params": {
 "field_name": "product"
 }
 }
 }
 }
}'
reply snippet
 "options" : [{
 "text" : "iphone accessories",
 "score" : 0.3933509
 }]
 }]

NOTE These are Mustache templates (more details at https://mustache
.github.io) and can also be used for predefining regular queries. You can find
more details on query templates here: www.elastic.co/guide/en/elasticsearch/
reference/current/query-dsl-template-query.html.

Collating works well for ironing out a few bad suggestions. If you have a high rate of
bad suggestions, consider running the phrase suggester against a separate index with
successful queries. This requires a lot of maintenance, but you should get much more
relevant suggestions. And because that index will probably be much smaller, you’ll get
better performance, too.

 Next, we’ll move on to autocomplete suggesters. You’re very likely to run them on
separate indices, because they typically have to be very fast and relevant.

Listing F.6 Using collate to see which suggestions would return results

The query can
contain variables
that you can pass
as parameters.

Suggestion
text is in the

predefined
suggestion

variable.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://mustache.github.io
https://mustache.github.io
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-template-query.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-template-query.html

451Autocomplete suggesters
F.2 Autocomplete suggesters
If autocomplete was cool in 2005, now it’s a must—any search without it looks ancient.
You expect a good autocomplete to help you search faster (especially on mobile
devices) and better (you type in e, so it should know you’re looking for Elasticsearch)
but also to allow you to explore popular options (“elasticsearch tutorial”—that’s actu-
ally a good idea!). Finally, a good autocomplete will reduce the load on your main
search system, especially if you have some sort of instant search available—when you
jump directly to a popular result without executing the full-blown search.

 A good autocomplete has to be fast and relevant: fast because it has to generate
suggestions as the user is typing, and relevant because you don’t want to suggest a
query with no results or one that isn’t likely to be useful.

 You can help with the quality of suggestions by keeping what would be good candi-
dates, such as successful products or queries, in a separate index. You could then run
the prefix queries we introduced in chapter 4 to generate suggestions. But those que-
ries might not be fast enough because ideally you need to come up with a suggestion
before the user types the next character.

 The completion and context suggesters help you build a faster autocomplete.
They’re built on Lucene’s Suggest module, keeping data in memory in finite state
transducers (FSTs). FSTs are essentially graphs that are able to store terms in a way
that’s compressed and easy to retrieve. Figure F.6 illustrates how the terms index,
search, and suggest would be stored.

The actual implementation is a bit more complex—because it allows you to add
weights, for instance—but you can imagine why in-memory FSTs are fast: you just have
to follow the paths and see that prefix s would lead to search and suggest.

 Next, we’ll look at how the Completion Suggester works, then move on to the Con-
text Suggester, which is an extension of it, much like the phrase suggester we dis-
cussed earlier is an extension of the simpler term suggester.

NOTE For versions 2.0 and later, a new Completion Suggester is planned.
It should have all the features of the current Completion and Context

s

u g g e

e

i

n

a r c
h

x

s

t

d e

Figure F.6 In-memory FSTs help you get fast suggestions based on a prefix.
Licensed to Thomas Snead <n.ordickan@gmail.com>

452 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
suggesters, plus a few more (like flexible scoring based on geo distance or
edit distance). The basic principles remain the same, though. For more infor-
mation on Completion Suggester Version 2, take a look at the main issue here:
https://github.com/elastic/elasticsearch/issues/8909. When this suggester is
released, you should see updated documentation in the Suggesters page:
www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters
.html.

F.2.1 Completion Suggester

To tell Elasticsearch that you meant to store suggestions in FSTs for autocomplete, you
need to define a field in the mapping with type set to completion. The easiest way to
store suggestions is by adding such a field as a multi-field to a field that you’re already
indexing, like in the following listing. There, you’ll index places like restaurants, and
you’ll add a suggest subfield to each place’s name field.

curl -XPUT 'localhost:9200/places' -d '{
"mappings": {
 "food": {
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "suggest": {
 "type": "completion"
 }
 }
 }
 }
 }
}}'
curl -XPUT 'localhost:9200/places/food/1' -d '{ "name": "Pizza Hut" }'
curl 'localhost:9200/places/_suggest?pretty' -d '{
 "name-autocomplete": {
 "text": "p",
 "completion": {
 "field": "name.suggest"
 }
 }
}'
#reply
 "name-autocomplete" : [{
 "text" : "p",
 "offset" : 0,
 "length" : 1,
 "options" : [{
 "text" : "Pizza Hut",
 "score" : 1.0
 }]

Listing F.7 Simple autocomplete based on existing data

Suggestions would
be stored in the
completion field.

Completion suggest requests
run on the completion field.

The indexed name
is returned as a
suggestion.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/8909
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters.html

453Autocomplete suggesters
If such a simple autocomplete implementation isn’t enough—for example, because
results aren’t ranked—there are quite a few options that can help you improve rele-
vancy. Some of them have to be done at index time (for example, you can add a
weight to each suggestion), whereas others work at search time (you can enable fuzzi-
ness). On top of all this, suggestions can have payloads, where you can store docu-
ment IDs that you can use for instant search.

IMPROVING RELEVANCY AT INDEX TIME

As with regular searches on string fields, the input text is analyzed at both index time
and search time. That’s why Pizza Hut matched p. You can control analysis through
the index_analyzer and search_analyzer options. For example, if you wanted case-
sensitive suggesting (so that only P matches, not p), you can use the keyword analyzer:

 "suggest": {
 "type": "completion",
 "index_analyzer": "keyword",
 "search_analyzer": "keyword"

If you need more information about analysis, you’ll find it in chapter 6.
 In most cases, you’ll keep suggestions in a separate field, index, or even a sepa-

rate Elasticsearch cluster. This helps when you want to control suggestions based on
how they perform and also to be able to scale suggesters separately from the main
search system.

 When suggestions are in a different field, you can separate the inputs you match
from the suggestion you provide (output). For example, a document like this

{
 "name": {
 "input": "phone",
 "output": "iphone"
 }
}

would let you suggest iphone for the input text ph. Also, you can provide multiple
inputs:

{
 "name": {
 "input": ["iphone", "phone"],
 "output": "iphone"
 }
}

Finally, you can rank suggestions based on weights you provide at index time. In the
next listing, you’ll combine inputs, outputs, and weights to implement autocom-
plete on top of group tags for the get-together use case you’ve been running for
most of this book.

Licensed to Thomas Snead <n.ordickan@gmail.com>

454 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
curl -XPUT 'localhost:9200/autocomplete' -d '{
"mappings": {
 "group": {
 "properties": {
 "tags": { "type": "completion" }
 }
 }
}}'
curl -XPUT 'localhost:9200/autocomplete/group/1' -d '{
"tags": {
 "input": ["big data", "data"],
 "output": "big data",
 "weight": 8
}}'
curl -XPUT 'localhost:9200/autocomplete/group/2' -d '{
"tags": {
 "input": ["data visualization", "visualization"],
 "output": "data visualization",
 "weight": 5
}}'
curl 'localhost:9200/autocomplete/_suggest?pretty' -d '{
"tags-autocomplete": {
 "text": "d",
 "completion": {
 "field": "tags"
 }
}}'
reply
 "tags-autocomplete" : [{
 "text" : "d",
 "offset" : 0,
 "length" : 1,
 "options" : [{
 "text" : "big data",
 "score" : 8.0
 }, {
 "text" : "data visualization",
 "score" : 5.0
 }]
 }]

IMPROVING RELEVANCY AT SEARCH TIME

When you run the suggest request, you can decide which suggestions will appear. Like
with other suggesters, size lets you control how many suggestions to return. Then, if
you want to tolerate typos, you need a fuzzy object under the completion object of
your suggest request. With fuzzy search enabled this way, you can configure additional
options, like the following:

■ fuzziness, which allows you to specify the maximum allowed edit distance
■ min_length, where you specify at which length of the input text to enable fuzzy

search

Listing F.8 Using weights, inputs, and outputs

When using
separate fields,
you can
separate inputs,
outputs, and
weights.

Suggestions are
the outputs ranked
by weight.
Licensed to Thomas Snead <n.ordickan@gmail.com>

455Autocomplete suggesters
■ prefix_length, which improves performance at the cost of flexibility by consid-
ering these first characters correct

All those options go under the completion object of your suggest request:

% curl 'localhost:9200/autocomplete/_suggest?pretty' -d '{
"tags-autocomplete": {
 "text": "daata",
 "completion": {
 "field": "tags",
 "size": 3,
 "fuzzy": {
 "fuzziness": 2,
 "min_length": 4,
 "prefix_length": 2
 }
 }
}}'

IMPLEMENTING INSTANT SEARCH WITH PAYLOADS

Many search solutions let you go directly to a specific result when clicking on a sugges-
tion instead of running that search. Figure F.7 shows an example from SoundCloud.

To implement this in Elasticsearch, you’d put a payload in your completion field, and
that payload would be the ID of the document you’re suggesting. You can then use the
ID to get the document, as you’ll do in the next listing.

curl -XPUT 'localhost:9200/autocomplete/_mapping/group' -d '{
"properties": {
 "name": {
 "type": "completion",
 "payloads": true
 }
}}'

Listing F.9 Payload lets you get documents instead of searching for the suggested text

Figure F.7 Instant search lets you jump to the result without running an actual search.

Enabling payloads in
the mapping of the
completion field
Licensed to Thomas Snead <n.ordickan@gmail.com>

456 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
curl -XPUT 'localhost:9200/autocomplete/group/3' -d '{
"name": {
 "input": "Elasticsearch San Francisco",
 "payload": {
 "groupId": 3
 }
}}'
curl 'localhost:9200/autocomplete/_suggest?pretty' -d '{
"name-autocomplete": {
 "text": "elastic",
 "completion": {
 "field": "name"
 }
}}'
reply
 "options" : [{
 "text" : "Elasticsearch San Francisco",
 "score" : 1.0,
 "payload":{"groupId":3}
 }]

The Completion Suggester returns all results matching the input text, which might
work well with something like SoundCloud. But some use cases require filtering, like
your get-together site: you only want to suggest events reasonably close to the user and
ignore the others. To do this, you’ll need the Context Suggester, which is built to add
filtering functionality on top of the Completion Suggester.

F.2.2 Context Suggester

The Context Suggester allows you to filter on a context, which can be a category
(term) or a geo location. To enable these contexts, you need to specify them in the
mapping and then provide contexts in documents and in your suggest requests.

DEFINING CONTEXTS IN THE MAPPING

You can add one or more context values to your completion field in the mapping.
Each context has a type, which can be either category or geo. For geo contexts, you
need to specify a precision value:

 "name": {
 "type": "completion",
 "context": {
 "location": {
 "type": "geo",
 "precision": "100km"
 },
 "category": {
 "type": "category"
 }
 }
 }

If input is the same as
output, you can omit it.

Adding payload to
the document

Payload comes back with the
suggestion. Now you can GET
the document with ID 3.
Licensed to Thomas Snead <n.ordickan@gmail.com>

457Autocomplete suggesters
 3

Contexts under the hood
Contexts work on top of the same FST structure that the Completion Suggester
uses. To enable filtering, the context would be used as a prefix to the actual sug-
gestion, like search_lucene if search is the category and lucene is the text you
want to match.

For geo contexts, the prefix is a geohash, like abcde. As you saw in appendix A about
geo search, a geohash indicates a rectangular area on the map, and the longer the
string, the higher the precision. For example, gc is a rectangle taking up most of Brit-
ain and Ireland, whereas gcp only goes from London to Southampton.3

Given a point on the map, you can approximate it with a geohash more or less pre-
cisely, depending on the hash length. For suggestions, you’d typically pick a precision
that would reflect how near a point of interest should be to the current location. For
example, restaurants would work with more precise hashes (like 10 km wide) than
get-together events (which may be 100 km wide), assuming that users are more likely
to drive farther for a monthly event than for a burger.

3 Snapshot taken from GeohashExplorer: http://geohash.gofreerange.com/.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://geohash.gofreerange.com/

458 APPENDIX F Using suggesters for autocomplete and did-you-mean functionality
ADDING CONTEXTS TO DOCUMENTS AND SUGGEST REQUESTS

With the mapping in place, you’d put contexts in documents under the context field
of your completion:

{
 "name": {
 "input": "Elasticsearch Denver",
 "context": {
 "location": {
 "lat": 39.752337,
 "lon": -105.00083
 },
 "category": ["big data"]
 }
 }
}

When fetching suggestions, you should add a context value to your completion request
as well:

% curl 'localhost:9200/autocomplete/_suggest?pretty -d '{
 "name-autocomplete": {
 "text": "denv",
 "completion": {
 "field": "name",
 "context": {
 "category": "big data",
 "location": {
 "lat": 39,
 "lon": -105
 }
 }
 }
 }
}'

TROUBLESHOOTING CONTEXT (AND COMPLETION) SUGGESTER ERRORS

Normally, if you define contexts and run the Context Suggester with no context in the
request, you’ll get an error for every shard:

"reason": "BroadcastShardOperationFailedException[[autocomplete][0]];
nested: ElasticsearchException[failed to execute suggest]; nested:
ElasticsearchIllegalArgumentException[suggester [completion] requires context
to be setup]; "

But if you really need to specify contexts to only some of your requests and docu-
ments, you can specify a default value in the mapping:

 "name": {
 "type": "completion",
 "context": {
 "category": {
 "type": "category",
 "default": "default_category"
 }
Licensed to Thomas Snead <n.ordickan@gmail.com>

459Autocomplete suggesters
 }
 }

Then you can index documents without categories:

{
 "name": {
 "input": "test meeting"
 }
}

Finally, if the user doesn’t enter any filtering context, you can fill in the default value
on your application; this is also possible with a geo context:

 "name-autocomplete": {
 "text": "te",
 "completion": {
 "field": "name",
 "context": {
 "category": "default_category"
 }
 }
 }

From a functionality standpoint, this works as if you have the Context Suggester when
you need it and the Completion Suggester when you don’t. But in both cases you
might get suggestions from deleted documents. This happens because the FSTs used
under the hood are built for each Lucene segment in the index, and they never get
changed until the segment is deleted during merging (when the FST gets deleted as
well). As you may recall from chapter 3, when a document is deleted, it’s not really
gone from the segment; it’s just marked as deleted.

 Although searches are smart enough to filter out deleted documents, suggesters
are not, at least in version 1.4. Until this is addressed in the new Completion Suggester
(see https://github.com/elastic/elasticsearch/issues/8909), you can work around this
issue by changing your merge policy or optimizing so you have as few deleted docu-
ments in the index as possible. For more information on merges, go to chapter 10,
section 10.2.2.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/elastic/elasticsearch/issues/8909

Licensed to Thomas Snead <n.ordickan@gmail.com>

index
Symbols

^ (caret) 157
_ (underscore) 65
? wildcard 112
* wildcard 112
& (ampersand) 34

Numerics

1-grams 141

A

administration
allocation awareness

forced 349–350
overview 347
shard-based

allocation 347–349
backing up data

Amazon S3 plugin 367
Hadoop HDFS plugin 367
restoring from

backups 366–367
shared file systems 362–366
snapshot API 362

default mappings
overview 344–346
using with templates

346–347
index templates

configuring on file
system 342–343

creating 341–342
deleting 344

general discussion 341
multiple template

merging 343–344
retrieving 344

monitoring for bottlenecks
checking cluster

health 350–353
CPU monitoring 353–356
memory monitoring

356–360
OS caches 360–361
store throttling 361–362

aggregations
children 245–247
facets vs. 180
field data and 183
filters and 185–186
histogram

date_histogram
aggregation 203–204

overview 202–203
metrics

advanced statistics 188–189
cardinality 190–191
memory and 191–192
percentiles 189–190
statistics 186–188

multi-bucket 192–193
for nested type

aggregating scores of nested
objects 231–232

nested and reverse nested
aggregations 234–235

nesting
filter aggregation 211–213
global aggregation 210–211

grouping results by 208–209
missing aggregation

213–214
multi-bucket 206–208
overview 204–214
single-bucket 209–210

overview 179–182
range

date_range aggregation
201–202

overview 200–201
running on query

results 184–185
structure of aggregation

request 182–183
terms

overview 193–195
significant terms 198–199
terms to include in

reply 195–198
aggregations key 183
algorithmic stemming 145
aliases

combining routing with 291
creating 284–286
defined 283
managing 283–284
usefulness of 283

_all field 67–68, 97
allocation awareness

forced 349–350
overview 347
shard-based allocation

347–349
Amazon S3 plugin 367
ampersand (&) 34
461

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX462
analysis
analyze API

analyzing based on field
mapping 128

combining parts to create
impromptu
analyzer 127–128

learning about indexed
terms using terms vectors
API 128–130

overview 126–127
selecting analyzer 127

analyzers
adding to Elasticsearch

configuration 123–124
adding upon index

creation 122–123
keyword 131
language-specific 131
overview 121–122
pattern 131
simple 131
snowball 131
specifying for field in

mapping 124–125
standard 130–131
stop 131
whitespace 131

breaking text into tokens 120
character filtering 120
defined 14, 59
doc values and 177
ngrams

1-grams 141
bigrams 141
edge ngrams 142
example using 142–143
min_gram and max_gram

settings 141–142
shingles and 143–145
trigrams 141

overview 119–120
stemming

algorithmic 145
defined 145
with dictionaries 146
overriding stemming from

token filter 146–147
token filters

ascii folding 139
length 135–136
limit token count 137
lowercase 135
overriding stemming

from 146–147

overview 120, 134
reverse 137–138
shingles 143–145
standard 134
stop 136–137
synonym 139–141
trim 137
truncate 137
unique 138

token indexing 120–121
tokenizers

keyword 132
letter 132
lowercase 132
path hierarchy 134
pattern 133
standard 132
UAX URL email 133–134
whitespace 132

analyzed fields 90
analyzed setting 60, 64
analyzer parameter 127
Apache Flume 11
Apache Lucene 4
Apache ManifoldCF 12
Apache Solr 13–14
application-side joins 255
arc option 373
arrays 64
ascii folding token filter 139
autocomplete suggesters

Completion Suggester
implementing instant

search with payloads
455–456

improving relevancy at
index time 453–454

improving relevancy at
search time 454–455

overview 452–453
Context Suggester

adding contexts to
documents 458

defining contexts in
mapping 456–457

troubleshooting
errors 458–459

overview 451–452

B

backup, data
Amazon S3 plugin 367
backing up to shared file

system 362–366

Hadoop HDFS plugin 367
restoring from backups

366–367
snapshot API 362

best_compression value 311
Bigdesk plugin 411
bigrams 141
bitsets 94, 314
body-based requests

example using 90–91
fields returned with

results 89
overview 88–89
sort order for results 90
wildcards in returned

fields 89
bool filter 107–109
bool query 105–106, 117
boolean type 63
boost parameter 156
boosting

at index time 155–156
overview 154–155
at query time 156
specifying boost for

multi_match 157–158
boost_mode parameter 164
bottlenecks

checking cluster health
350–353

CPU monitoring
hot_threads API 354–355
slow index log 354
slow logs 353
slow query log 354
thread pools 355–356

memory monitoring
avoiding swap 359–360
circuit breaker 359
field-data cache 358
filter and field cache

357–358
heap size 356–357

OS caches 360–361
store throttling 361–362

bounding boxes 376–377
breadth_first option 198
bucket aggregations 181
bulk indexing 295–297

C

_cache flag 313–314
_cache setting 230
cache thread pool type 356
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 463
caches
combining filters 314–316
filter cache 313–314
JVM heap

half rule 323
oversized 322–323
overview 321–322

OS 360–361
priming with warmers

323–325
running filters on field

data 316–318
shard query cache 318–321

cardinality aggregation
memory and 191–192
overview 190–191
uses for 192

caret (^) 157
_cat API 276–278
CentOS 16
character filtering 120
child documents 243
children aggregation 245–247
circuit breaker 175–176, 359
closing indices 81
cluster administration

allocation awareness
forced 349–350
overview 347
shard-based

allocation 347–349
backing up data

Amazon S3 plugin 367
backing up to shared file

system 362–366
Hadoop HDFS plugin 367
restoring from

backups 366–367
snapshot API 362

default mappings
overview 344–346
using with templates

346–347
index templates

configuring on file
system 342–343

creating 341–342
deleting 344
general discussion 341
multiple template

merging 343–344
retrieving 344

monitoring for bottlenecks
checking cluster

health 350–353

CPU monitoring 353–356
memory monitoring

356–360
OS caches 360–361
store throttling 361–362

cluster.name setting 265
clusters

adding nodes to 262–265
overview 13
removing nodes from

269–273
visualization of 411

code plugins 384
collect_mode setting 198
Completion Suggester

implementing instant
search with payloads
455–456

improving relevancy at index
time 453–454

improving relevancy at search
time 454–455

overview 452–453
compound queries

bool filter 107–109
bool query 105–106

compression parameter 190
concurrency 74–77
Context Suggester

adding contexts to
documents 458

defining contexts in
mapping 456–457

troubleshooting errors
458–459

count search type 319, 336
CPU monitoring

hot_threads API 354–355
slow index log 354
slow logs 353
slow query log 354
thread pools 355–356

cURL 21
Cygwin 33

D

date type 62–63
date_histogram

aggregation 203–204
date_range aggregation

201–202, 204
DEB packages 16
decay functions 167–169
default analyzer 14

default mappings
overview 344–346
using with templates 346–347

deleting data
closing indices 81
documents

overview 78–79
removing mapping type

and matching
documents 79–80

single document 79
indices 80
overview 78

denormalizing data
defined 220
deleting members 253
indexing 252
overview 247–248
pros and cons of 254
querying 253–255
representation of one-to-many

relationship 251
side to be denormalized 251
updating documents 252
use cases for

many-to-many
relationships 250

one-to-many
relationships 249

overview 248–249
depth_first option 198
derivatives 7
DF (document frequency) 335
dictionaries 146
did-you-mean suggesters

overview 438–439
phrase suggester

candidate generators
444–446

excluding suggestions
based on criteria
449–450

overview 442–444
using shingles field for scor-

ing candidates 446–448
using smoothing models to

score shingles 448–449
term suggester

choosing terms to be
considered 441–442

overview 439–440
ranking suggestions

440–441
direct_generator 444
disable_dynamic option 73
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX464
distance between points
filter and aggregate based on

distance range
aggregation 374–375

distance range filter 374
overview 372–374

sorting by 370–372
distance range

aggregation 374–375
distance_type parameter 373
distributed scoring 335–336
doc values 176, 317
doc_count_error_upper_bound

value 197
document frequency. See DF
documents

deleting data
closing indices 81
documents 78–80
indices 80
overview 78

field types
arrays 64
boolean 63
date 62–63
multi-fields 64–65
numeric 61–62
overview 58–59
string 59–61

IDs for 68–69
mappings

defining new 56–57
extending existing 57–58
getting current 56
overview 54–56

predefined fields
_all 67–68
fields parameter and 67
_index for storing index

name 70
overview 65–66
_source 66
_uid 68–69

updating
concurrency control

through versioning
74–77

creating documents with
upsert 72–73

overview 70–72
with scripts 73–74
sending partial

documents 72
dynamic mapping 345
dynamic scripting 187

E

eager setting 173
edge ngrams 142, 327–328
ElasticHQ plugin 412–413
Elasticsearch

downloading and running 16
Java requirement 15
REST API 18
startup logs 17–18
structuring data in 15
use cases

adding to existing
system 9–11

extending Lucene
functionality 13–15

overview 8–9
primary back end 9
using with existing

tools 11–13
Elasticsearch Head 34
Elasticsearch kopf 34
elasticsearch-marvel plugin 384
 tags 397
email addresses 133
env command 15
exact matches 7–8
exclude option 197
execution modes 318
execution setting 317
exists filter 114, 314
explain flag 158
explaining score 158–160
extended_stats aggregation

188–189, 192

F

facets 180
Fast Vector Highlighter

configuring boundary
characters 408–409

highlighting multi-fields
405–407

limiting number of matches
for 409

overview 404–405
using different tags for differ-

ent fragments 407
fault detection 268–269
field data

aggregations and 183
field data cache 173
limiting memory used by 175
overview 172–173

uses for 174
using circuit breaker

175–176
using doc values 176

field types
arrays 64
boolean 63
date 62–63
multi-fields 64–65
numeric 61–62
overview 58–59
predefined fields

_all 67–68
fields parameter and 67
overview 65–66
_source 66
_uid 68–69

string 59–61
field-data cache 358
fields

checking for existence using
filters
exists filter 114
missing filter 114–115
overview 113–114
transforming any query into

filter 115–116
objects as

mapping and
indexing 222–223

overview 221–222
searching in 223–225

returned with results 89
wildcards in returned 89

fields parameter 67
field_value_factor function

164–165
filter aggregation 211–213
filter and field cache

357–358
filter cache

combining filters 314–316
overview 313–314
running filters on field

data 316–318
filtered queries 43
filters

aggregations and 185–186
checking for field existence

using
exists filter 114
missing filter 114–115
overview 113–114
transforming any query into

filter 115–116
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 465
filters (continued)
match query and term filter

boolean query behavior 102
overview 92–95, 102
phrase query

behavior 102–103
overlapping shapes 381
overview 93
prefix filter 111–112
range filter 109–111
term query and term

filter 98–100
fixed boost value 155
fixed thread pool type 356
flush thresholds 303–305
forced allocation

awareness 349–350
force_source setting 392
format option 62
fragment_offset parameter 409
fragment_size option 395–396,

402
from field 87
function_score query 371

combining scores 164
configuration options 169–170
decay functions 167–169
example of 170–171
field_value_factor

function 164–165
overview 162
random_score function

166–167
script scoring 165–166
weight function 162–164

fuzzy queries
defined 7
performance 326–327

G

GC (garbage collector) 321, 356
geo polygon filter 377
geohashes

geohash cell filter 378–379
geohash grid aggregation 379
overview 377–378

geospatial data
adding distance to sort

criteria 370–372
bounding boxes 376–377
filter and aggregate based on

distance
distance range

aggregation 374–375

distance range filter 374
overview 372–374

geohashes
geohash cell filter

378–379
geohash grid

aggregation 379
overview 377–378

points and distances between
them 370

shape intersections
filtering overlapping

shapes 381
indexing shapes 380–381
overview 380

global aggregation 210–211
Groovy 73, 165, 332
grouping requests

bulk indexing 295–297
multiget API 300–301
multisearch API 299–300
overview 294–295
update and delete

requests 298–299
grouping results 208–209
gt parameter 110
gte parameter 110

H

Hadoop HDFS plugin 367
half rule 323
has_child filter 241–243,

313–314
has_child query 241–243, 251
has_parent filter 244–245,

313–314
has_parent query 244–245,

251
Head plugin 34, 414
health command 263
heap size 356–357
highlighting

Fast Vector Highlighter
configuring boundary

characters 408–409
highlighting multi-

fields 405–407
limiting number of matches

for 409
overview 404–405
using different tags for dif-

ferent fragments 407
fields matching query

only 394–395

options
changing tags used for

highlighting 397–398
fragment_size option

395–396
highlight_query 399–400
number_of_fragments

option 397
order of fragments 396–397

overview 390–392
percolated documents 433
Plain Highlighter 400
Postings Highlighter 400–403
returning fragments to

user 392–394
histogram aggregation

date_histogram
aggregation 203–204

overview 202–203
uses for 204

horizontal scaling 30
hot_threads API 354–355
hunspell token filter 146

I

_id field 68–69
ID, document 22, 68–69
IDF (inverse document

frequency) 7, 41, 150–151,
159

include option 197
include_in_all option 68
include_in_parent option 228,

232
include_in_root option 228,

232
index key 122
index templates

configuring on file
system 342–343

creating 341–342
deleting 344
general discussion 341
multiple template

merging 343–344
retrieving 344

index.gc_deletes option 79
index_analyzer option 453
indexes

boosting at index time
155–156

closing 81
deleting 80
doc values and 177
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX466
indexes (continued)
limits of 273
optimizing 307–308
splitting data into 280–281
using separate for

percolator 428–429
indexing

adding analyzers upon index
creation 122–123

bulk indexing 295–297
denormalizing data 252
Elasticsearch vs. Lucene 28
inverted indexing 5
nested type

enabling cross-object
matches 227–228

include_in_parent
option 228

include_in_root option
228

overview 226–227
objects 222–223
parent-child

relationships 239–240
shapes 380–381

index_options setting 328,
400–401

inexact matches 326
initializing_shards value 351
inner_hits option 232, 243
--install parameter 389
interval field 202
inverse document frequency. See

IDF
inverted indexing 5, 27
ISO 8601 standard 62

J

Java 15
JAVA_HOME environment

variable 15
JRE (Java Runtime

Environment) 15
JSON (JavaScript Object

Notation) 11–12, 39
JVM heap

half rule 323
oversized 322–323
overview 321–322

K

keyword analyzer 131
keyword marker token filter 146

keyword tokenizer 132
Kibana 11
Kopf plugin 34, 415
kstem filter 145

L

-l parameter 385
lang setting 331–332
language-specific analyzers 131
least recently used. See LRU
length token filter 135–136
letter tokenizer 132
limit token count token

filter 137
--list parameter 385
log aggregation 341
logical layout 21
logs, startup 17–18
Logstash 11, 342
lowercase tokenizer 132, 135
LRU (least recently used) 175,

313, 357
lt parameter 110
lte parameter 110
Lucene

expressions 331–332
facets and 180
scoring formula 151–152
shards and 27
types and 55
See also segments, Lucene

M

many-to-many relationships
250

mapping, document
default mappings

overview 344–346
using with templates

346–347
defining new 56–57
extending existing 57–58
getting current 56
nested type

enabling cross-object
matches 227–228

include_in_parent
option 228

include_in_root option
228

overview 226–227
objects 222–223
overview 54–56

removing mapping type and
matching documents
79–80

specifying analyzer for field
in 124–125

types of 24
using percolator 421–422

Marvel plugin 34, 416–417
master node 17
match query 116

analysis and 121
boolean query behavior 102
overview 102
phrase query behavior

102–103
match query and term filter

92–95
match_all query 96, 117
matched_fields option 407
match_phrase query 116, 121
match_phrase_prefix query

103
Maven Central 385
max_bytes_per_sec setting 308
max_edits option 441
max_errors option 449
max_gram setting 141–142
MAX_MAP_COUNT

variable 311
max_merge_at_once

setting 306
max_merged_segment

setting 307
max_num_segments option

308
MAX_OPEN_FILES

variable 311
max_score element 41
max_shingle_size option 447
max_term_freq option 442
max_thread_count setting 307
memory

allocation of, 48
cardinality aggregation

and 191–192
limiting use by field data

175
memory monitoring

avoiding swap 359–360
circuit breaker 359
field-data cache 358
filter and field cache

357–358
heap size 356–357

merge policies 305–306
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 467
MergeMappingException 57
metadata 404
metrics aggregations

advanced statistics 188–189
cardinality 190–191
memory and 191–192
percentiles 189–190
statistics 186–188

_mget endpoint 300
min_doc_count option 197,

204
min_doc_freq option 442
min_gram setting 141–142
minimum_master_nodes

setting 267
minimum_should_match

setting 108–109
min_shingle_size option 447
missing aggregation 213–214
missing filter 114–115, 117,

314
MMapDirectory 310
mmapfs value 310–311
mode option 233
monitoring for bottlenecks

checking cluster health
350–353

CPU monitoring
hot_threads API 354–355
slow index log 354
slow logs 353
slow query log 354
thread pools 355–356

memory monitoring
avoiding swap 359–360
circuit breaker 359
field-data cache 358
filter and field cache

357–358
heap size 356–357

OS caches 360–361
store throttling 361–362

monitoring plugins
Bigdesk 411
ElasticHQ 412–413
Head 414
Kopf 415
Marvel 416–417
Sematext SPM 416

_mpercolate endpoint 427
_msearch endpoint 299
multi percolate API 425–427
multi-bucket aggregations

192–193, 206–208
multicast discovery 265–266

multi-fields
highlighting 405–407
overview 64–65
storing differently analyzed

text using 125
multiget API 300–301
multi_match query 104, 117,

157–158
multisearch API 299–300
multi-tenancy 341
must clause 105
must_not clause 105

N

near-real-time 25
nested aggregation 234
nested filter 230, 314
nested query 230–231
nested type 58

defined 218–219
mapping and indexing

enabling cross-object
matches 227–228

include_in_parent
option 228

include_in_root option 228
overview 226–227

overview 225–226
pros and cons of using 236
searches and aggregations on

nested documents
aggregating scores of nested

objects 231–232
getting which inner docu-

ment matched 232–233
nested and reverse nested

aggregations 234–235
nested query and filter 230
nested sorting 233–234
performance

considerations 235–236
searching in multiple levels

of nesting 231
nesting aggregations

filter aggregation 211–213
global aggregation 210–211
grouping results by 208–209
missing aggregation 213–214
multi-bucket 206–208
overview 204–214
single-bucket 209–210

ngrams 443
1-grams 141
bigrams 141

defined 141
edge ngrams 142
example using 142–143
min_gram and max_gram

settings 141–142
shingles and 143–145
trigrams 141

niofs value 310
NIOFSDirectory 310–312
node.master setting 267
nodes

adding to cluster 262–265
discovering

fault detection 268–269
multicast discovery

265–266
selecting master node

267–268
unicast discovery 266

removing from cluster
269–273

upgrading
minimizing recovery time

for restart 276
overview 274
rolling restarts 274–276

no_match_size setting 393
NoSQL 9
not_analyzed setting 60–61, 64,

125
number_of_fragments

option 397, 402
numeric type 61–62

O

object type
defined 217–218
mapping and indexing

222–223
overview 221–222
pros and cons of using 225
searching in objects 223–225

offset option 169
Okapi BM25 scoring

method 154
one-to-many relationships 249,

251
one-to-one relationships 217,

224
OOP (ordinary object

pointers) 357
OpenJDK 15
optimistic concurrency

control 77
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX468
_optimize endpoint 308
optimize_bbox filter 373
or execution mode 318
ordinary object pointers. See

OOP
origin option 169
OutOfMemory exceptions 359
OutOfMemoryError 175–176
output_unigrams option 144
over-sharding 279–280

P

paging performance 336
_parent field 236–239, 241, 247
parent-child relationships

defined 219–220
deleting documents 240
indexing and retrieving

239–240
mapping 239
overview 236–238
pros and cons of using 247
searching in parent and child

documents
children aggregation

245–247
getting child documents in

results 243
has_child query and

filter 241–243
has_parent query and

filter 244–245
overview 240–241

updating child
documents 240

partial documents 72
path hierarchy tokenizer 134
pattern analyzer 131
pattern tokenizer 133, 408
percentile_ranks

aggregation 190, 192
percentiles aggregation

189–190, 192
_percolate endpoint 422
percolate_format setting 422
percolator

aggregations on matching
query metadata 435

defining mapping 421–422
highlighting percolated

documents 433
overview 419–421
percolating documents

423–424

performance
filtering registered

queries 430–432
getting only number of

matching queries
427–428

multi percolate API
425–427

percolating existing
documents 424–425

using percolator with
routing 429–430

using separate indices for
percolator 428–429

ranking matching
queries 433–435

registering queries 422
unregistering queries 422–423

performance
caches

combining filters 314–316
filter cache 313–314
JVM heap 321–323
priming with warmers

323–325
running filters on field

data 316–318
shard query cache 318–321

distributed scoring 335–336
doc values and 176
edge ngrams 327–328
fuzzy queries 326–327
general discussion 293–294
grouping requests

bulk indexing 295–297
multiget API 300–301
multisearch API 299–300
overview 294–295
update and delete

requests 298–299
horizontal scaling 30
improving paging 336
optimizing Lucene segments

handling
flush thresholds 303–305
merge policies 305–306
MMapDirectory 310
NIOFSDirectory 310–312
overview 301–302
refresh thresholds 302–303
store throttling 308–310

_parent field and 237
percolator

filtering registered
queries 430–432

getting only number of
matching queries
427–428

multi percolate API 425–427
percolating existing

documents 424–425
using percolator with

routing 429–430
using separate indices for

percolator 428–429
phrase queries 328–329
prefix queries 327–328
query_and_fetch vs.

query_then_fetch
methods 333–335

returning only counts 336
scripts

accessing field data 333
avoiding 330–331
general discussion 329–330
Lucene expressions

331–332
native 331
using term statistics 332

shingles 328–329
vertical scaling 30
wildcard queries 328

pessimistic concurrency
control 77

phrase queries
intensive scoring for 161
performance 328–329

phrase suggester
candidate generators

444–446
excluding suggestions

based on criteria
449–450

overview 442–444
using shingles field for scoring

candidates 446–448
using smoothing models to

score shingles 448–449
phrase_prefix query 103–104
physical layout 21
Plain Highlighter 400
plane option 373
plugins

accessing 386–387
installing 384–386
monitoring

Bigdesk 411
ElasticHQ 412–413
Head 414
Kopf 415
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 469
plugins (continued)
Marvel 416–417
Sematext SPM 416

overview 383–384
removing 388–389
requiring installation of

387–388
updating 388–389

porter_stem filter 145
post filter 185
Postings Highlighter 400–403
post_tags option 397
precision parameter 381
precision_threshold

parameter 191–192
predefined fields

_all 67–68
fields parameter and 67
overview 65–66
_source 66
_uid 68–69

prefix filter 111–112, 314
prefix queries 111–112, 117,

327–328
prefix_length option 441
pre_tags option 397

Q

queries
boosting at query time 156
checking for field existence

with filters
exists filter 114
missing filter 114–115
overview 113–114
transforming any query into

filter 115–116
choosing best for

situation 116–117
compound

bool filter 107–109
bool query 105–106

deleting by 80
for denormalized data

253–255
match query and term filter

boolean query
behavior 102

overview 92–95, 102
phrase query

behavior 102–103
match_all query 96
multi_match query 104
for objects 223–225

parent-child relationships
children aggregation

245–247
getting child documents in

results 243
has_child query and

filter 241–243
has_parent query and

filter 244–245
overview 240–241

phrase_prefix query 103–104
prefix query 111–112
query_string query 96–98
range query 109–111
term query and term

filter 98–100
terms query 100–102
wildcard query 112–113

query rescoring 160–162
query_and_fetch vs.

query_then_fetch
methods 333–335

query_cache parameter 320
query_string query 96–98
query_weight parameter 161
queue_size parameter 356

R

random_score function
166–167

range aggregation
date_range aggregation

201–202
overview 200–201
uses for 204

range filter 109–111
range query 109–111, 117
real_word_error_likelihood

option 449
Red Hat Linux 16
refresh thresholds 302–303
regexp filter 314
registering queries 422
regulatory compliance 341
relationships

application-side joins 255
denormalizing data

defined 220
deleting members 253
indexing 252
overview 247–248
querying 253–255
representation of one-to-

many relationship 251

side to be denormalized
251

updating documents 252
use cases for 248–250

nested type
aggregating scores of nested

objects 231–232
defined 218–219
getting which inner docu-

ment matched 232–233
mapping and indexing

226–229
nested and reverse nested

aggregations 234–235
nested query and filter 230
nested sorting 233–234
overview 225–226
performance

considerations 235–236
searching in multiple levels

of nesting 231
object type

defined 217–218
mapping and indexing

222–223
overview 221–222
searching in objects

223–225
overview 215–217
parent-child relationships

defined 219–220
deleting documents 240
indexing and retrieving

239–240
mapping 239
overview 236–238
searching in parent and

child documents 240–247
updating child

documents 240
relevancy

boosting
at index time 155–156
overview 154–155
at query time 156
specifying boost for

multi_match 157–158
custom scoring

combining scores 164
configuration options

169–170
decay functions 167–169
example of 170–171
field_value_factor

function 164–165
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX470
relevancy (continued)
overview 162
random_score

function 166–167
script scoring 165–166
weight function 162–164

field data
field data cache 173
limiting memory used

by 175
overview 172–173
uses for 174
using circuit breaker

175–176
using doc values 176

inverted indexing and 6
query rescoring 160–162
scoring

example of 170–171
explaining score 158–160
inverse document

frequency 150–151
Lucene scoring

formula 151–152
Okapi BM25 scoring

method 154
other methods 152–154
overview 149–150
reducing impact of 160–162
term frequency 150

solving search problems 6–7
sorting with scripts 171–172

relocating_shards value 351
--remove parameter 388
replicas 29
requests, query

body-based
example using 90–91
fields returned with

results 89
overview 88–89
sort order for results 90
wildcards in returned

fields 89
components of 86–88
results page size 87
specifying search scope 85–86
URL-based 87–88

require_field_match
setting 394–395

rescore_query_weight
parameter 162

rescoring 161
response, query 91–92
REST API 18

_restore command 366
restoring from backups 366–367
result grouping 205
results page

sort order 90
specifying start and size 87

retry_on_conflict parameter 77
reverse token filter 137–138
reverse_nested aggregation 235
rolling restarts 274–276
routing

combining with aliases 291
configuring 290–291
defined 238
overview 286–287
_search_shards API 289–290
strategies 287–289
usefulness of 287
using percolator with 429–430

routing values 238
RoutingMissingException 240
RPM packages 16
Rsyslog 11

S

scale option 169
scaling

adding nodes to cluster
262–265

aliases
creating 284–286
defined 283
managing 283–284
usefulness of 283

_cat API 276–278
discovering nodes

fault detection 268–269
multicast discovery

265–266
selecting master node

267–268
unicast discovery 266

removing nodes from
cluster 269–273

routing documents
combining routing with

aliases 291
configuring routing

290–291
overview 286–287
_search_shards API

289–290
strategies 287–289
usefulness of 287

strategies
maximizing throughput

281
over-sharding 279–280
splitting data into indices

and shards 280–281
upgrading nodes

minimizing recovery time
for restart 276

overview 274
rolling restarts 274–276

scan search type 338
schema-free 24
scope, search 85–86
_score field 90
score_mode option 164,

231–232
scoring

custom, with function_score
query
combining scores 164
configuration options

169–170
decay functions 167–169
example of 170–171
field_value_factor

function 164–165
overview 162
random_score function

166–167
script scoring 165–166
weight function 162–164

example of 170–171
explaining score 158–160
inverse document

frequency 150–151
Lucene scoring formula

151–152
Okapi BM25 scoring

method 154
other methods 152–154
overview 149–150
reducing impact of 160–162
term frequency 150
testing 154

script filter 314
script scoring 165–166
scripts

caveats when using 187
performance

accessing field data 333
avoiding 330–331
general discussion 329–330
Lucene expressions

331–332
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 471
scripts (continued)
native 331
using term statistics 332

sorting with 171–172
updating documents with

73–74
scroll parameter 337–338
_search endpoint 85
search_analyzer option 453
searching

choosing query for
situation 116–117

compound queries
bool filter 107–109
bool query 105–106

overview 83–85
query and filter DSL

match query and term
filter 92–95, 102–103

match_all query 96
multi_match query 104
phrase_prefix query

103–104
prefix query and filter

111–112
query_string query 96–98
range query and filter

109–111
term query and term

filter 98–100
terms query 100–102
wildcard query 112–113

querying for field existence
with filters
exists filter 114
missing filter 114–115
overview 113–114
transforming any query into

filter 115–116
requests

body-based 88–91
components of 86–88
results page size 87
specifying search scope

85–86
URL-based 87–88

response structure 91–92
_search_shards API 289–290
search_type setting 319
segments, Lucene

defined 80
flush thresholds 303–305
merge policies 305–306
MMapDirectory 310
NIOFSDirectory 310–312

overview 301–302
refresh thresholds 302–303
store throttling 308–310

segments_per_tier setting 306
Sematext SPM plugin 416
set command 15
shape intersections

filtering overlapping
shapes 381

indexing shapes 380–381
overview 380

shard query cache 318–321
shard-based allocation 347–349
shards

mapping types and 55
segments and 80
splitting data into 280–281

shingles 328–329, 443
shingles token filter 143–145
should clause 105, 109
show_term_doc_count_error

setting 197
significant terms 198–199, 204
simple analyzer 131
simple_query_string query 116
site plugins 383
size field 87
sloppy_arc option 373
slow index log 354
slow logs 353
slow query log 354
smoothing models 448
snapshot API 362
snowball analyzer 131
snowball filter 145
Solr 180
sort option 90
sorting

by distance between
points 370–372

with scripts 171–172
_source field 66, 86, 89, 333
split brain scenario 267
standard analyzer 130–131
standard token filter 134
standard tokenizer 132
startup logs 17–18
statistics 7–8
stats aggregation 186–188, 192
stemming

algorithmic 145
defined 145
with dictionaries 146
overriding stemming from

token filter 146–147

stop analyzer 131
stop token filter 136–137
store option 67
store throttling 308–310,

361–362
string type 59–61
Stupid Backoff algorithm 448
suggest element 439
suggesters

autocomplete suggesters
Completion Suggester

452–456
Context Suggester

456–459
overview 451–452

did-you-mean suggesters
overview 438–439
phrase suggester 442–450
term suggester 439–442

SUSE 16
synonym token filter 139–141

T

tags_schema setting 407
term dictionary 28
term filter 314

boolean query behavior 102
overview 92–95, 102
phrase query behavior

102–103
term query and 98–100

term frequency. See TF
term frequency-inverse docu-

ment frequency scoring
method. See TF-IDF scoring
method

term query 98–102, 117, 121
term statistics 332
term suggester

choosing terms to be
considered 441–442

overview 439–440
ranking suggestions 440–441

term vectors 404
terms aggregation 174

example using 182
overview 193–195
significant terms 198–199
terms to include in reply

195–198
uses for 204

terms filter 314
_termvector endpoint 128
testing 154
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX472
TF (term frequency) 28, 41,
150, 159

TF-IDF (term frequency-inverse
document frequency) scor-
ing method 7, 41, 150–151,
396

TFIDFSimilarity class 152
thread pools 355–356
throughput, maximizing 281
time to live. See TTL
timestamps 62
token filters

ascii folding 139
length 135–136
limit token count 137
lowercase 135
overriding stemming

from 146–147
overview 134
reverse 137–138
shingles 143–145
standard 134
stop 136–137
synonym 139–141
trim 137
truncate 137
unique 138

token indexing 120–121
token key 127
tokenizers

breaking text into tokens 120
keyword 132
letter 132
lowercase 132
path hierarchy 134
pattern 133

standard 132
UAX URL email 133–134
whitespace 132

top_hits aggregation 209
transactions support 9
trigrams 141
trim token filter 137
truncate token filter 137
TTL (time to live) 313
_type field 68–69
typos 7

U

UAX URL email tokenizer
133–134

_uid field 68–69
unassigned_shards count 263,

351
underscore (_) 65
unicast discovery 266
unique token filter 138
unregistering queries 422–423
_update endpoint 72
updating documents

concurrency control through
versioning 74–77

creating documents with
upsert 72–73

overview 70–72
with scripts 73–74
sending partial documents

72
upgrading nodes

minimizing recovery time for
restart 276

overview 274
rolling restarts 274–276

--url parameter 385
URL-based requests 87–88
use cases

adding to existing system 9–11
extending Lucene

functionality 13–15
overview 8–9
primary back end 9
using with existing tools 11–13

V

versioning 74–77
version_type option 78
vertical scaling 30
visualization 411

W

wait_for_completion flag 366
wait_for_merge setting 308
warmers 173, 323–325
website addresses 133
weight function 162–164
whitespace analyzer 131
whitespace tokenizer 132
wildcard queries 112–113, 328
with_positions_offsets

setting 404

Y

YAML (YAML Ain’t Markup
Language) 12
Licensed to Thomas Snead <n.ordickan@gmail.com>

Gheorghe ● Hinman ● Russo

M
odern search seems like magic—you type a few words
and the search engine appears to know what you want.
With the Elasticsearch real-time search and analytics

engine, you can give your users this magical experience with-
out having to do complex low-level programming or under-
stand advanced data science algorithms. You just install it,
tweak it, and get on with your work.

Elasticsearch in Action teaches you how to write applications
that deliver professional quality search. As you read, you’ll
learn to add basic search features to any application, enhance
search results with predictive analysis and relevancy ranking,
and use saved data from prior searches to give users a custom
experience. This practical book focuses on Elasticsearch’s REST
API via HTTP. Code snippets are written mostly in bash using
cURL, so they’re easily translatable to other languages.

What’s Inside
● What is a great search application?
● Building scalable search solutions
● Using Elasticsearch with any language
● Confi guration and tuning

Perfect for developers and administrators building and
managing search-oriented applications.

Radu Gheorghe is a search consultant and software engineer.
Matthew Lee Hinman develops highly available, cloud-based
systems. Roy Russo is a specialist in predictive analytics.

Technical editor: Jettro Coenradie

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/elasticsearch-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Elasticsearch IN ACTION

SEARCH

M A N N I N G

“To understand how a
modern search infrastructure

works is a daunting task.
Radu, Matt, and Roy
make it an engaging,

hands-on experience.”
—Sen Xu, Twitter Inc.

“An indispensable guide
to the challenges of search
of semi-structured data.”—Artur Nowak, Evidence Prime

“The best resource
 for a complex topic.

 Highly recommended.”
—Daniel Beck, juris GmbH

“Took me from confused
 to confi dent in a week.”
—Alan McCann, Givsum.com

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	Part 1
	1 Introducing Elasticsearch
	1.1 Solving search problems with Elasticsearch
	1.1.1 Providing quick searches
	1.1.2 Ensuring relevant results
	1.1.3 Searching beyond exact matches

	1.2 Exploring typical Elasticsearch use cases
	1.2.1 Using Elasticsearch as the primary back end
	1.2.2 Adding Elasticsearch to an existing system
	1.2.3 Using Elasticsearch with existing tools
	1.2.4 Main Elasticsearch features
	1.2.5 Extending Lucene functionality
	1.2.6 Structuring your data in Elasticsearch
	1.2.7 Installing Java
	1.2.8 Downloading and starting Elasticsearch
	1.2.9 Verifying that it works

	1.3 Summary

	2 Diving into the functionality
	2.1 Understanding the logical layout: documents, types, and indices
	2.1.1 Documents
	2.1.2 Types
	2.1.3 Indices

	2.2 Understanding the physical layout: nodes and shards
	2.2.1 Creating a cluster of one or more nodes
	2.2.2 Understanding primary and replica shards
	2.2.3 Distributing shards in a cluster
	2.2.4 Distributed indexing and searching

	2.3 Indexing new data
	2.3.1 Indexing a document with cURL
	2.3.2 Creating an index and mapping type
	2.3.3 Indexing documents from the code samples

	2.4 Searching for and retrieving data
	2.4.1 Where to search
	2.4.2 Contents of the reply
	2.4.3 How to search
	2.4.4 Getting documents by ID

	2.5 Configuring Elasticsearch
	2.5.1 Specifying a cluster name in elasticsearch.yml
	2.5.2 Specifying verbose logging via logging.yml
	2.5.3 Adjusting JVM settings

	2.6 Adding nodes to the cluster
	2.6.1 Starting a second node
	2.6.2 Adding additional nodes

	2.7 Summary

	3 Indexing, updating, and deleting data
	3.1 Using mappings to define kinds of documents
	3.1.1 Retrieving and defining mappings
	3.1.2 Extending an existing mapping

	3.2 Core types for defining your own fields in documents
	3.2.1 String
	3.2.2 Numeric
	3.2.3 Date
	3.2.4 Boolean

	3.3 Arrays and multi-fields
	3.3.1 Arrays
	3.3.2 Multi-fields

	3.4 Using predefined fields
	3.4.1 Controlling how to store and search your documents
	3.4.2 Identifying your documents

	3.5 Updating existing documents
	3.5.1 Using the update API
	3.5.2 Implementing concurrency control through versioning

	3.6 Deleting data
	3.6.1 Deleting documents
	3.6.2 Deleting indices
	3.6.3 Closing indices
	3.6.4 Re-indexing sample documents

	3.7 Summary

	4 Searching your data
	4.1 Structure of a search request
	4.1.1 Specifying a search scope
	4.1.2 Basic components of a search request
	4.1.3 Request body–based search request
	4.1.4 Understanding the structure of a response

	4.2 Introducing the query and filter DSL
	4.2.1 Match query and term filter
	4.2.2 Most used basic queries and filters
	4.2.3 Match query and term filter
	4.2.4 Phrase_prefix query

	4.3 Combining queries or compound queries
	4.3.1 bool query
	4.3.2 bool filter

	4.4 Beyond match and filter queries
	4.4.1 Range query and filter
	4.4.2 Prefix query and filter
	4.4.3 Wildcard query

	4.5 Querying for field existence with filters
	4.5.1 Exists filter
	4.5.2 Missing filter
	4.5.3 Transforming any query into a filter

	4.6 Choosing the best query for the job
	4.7 Summary

	5 Analyzing your data
	5.1 What is analysis?
	5.1.1 Character filtering
	5.1.2 Breaking into tokens
	5.1.3 Token filtering
	5.1.4 Token indexing

	5.2 Using analyzers for your documents
	5.2.1 Adding analyzers when an index is created
	5.2.2 Adding analyzers to the Elasticsearch configuration
	5.2.3 Specifying the analyzer for a field in the mapping

	5.3 Analyzing text with the analyze API
	5.3.1 Selecting an analyzer
	5.3.2 Combining parts to create an impromptu analyzer
	5.3.3 Analyzing based on a field’s mapping
	5.3.4 Learning about indexed terms using the terms vectors API

	5.4 Analyzers, tokenizers, and token filters, oh my!
	5.4.1 Built-in analyzers
	5.4.2 Tokenization
	5.4.3 Token filters

	5.5 Ngrams, edge ngrams, and shingles
	5.5.1 1-grams
	5.5.2 Bigrams
	5.5.3 Trigrams
	5.5.4 Setting min_gram and max_gram
	5.5.5 Edge ngrams
	5.5.6 Ngram settings
	5.5.7 Shingles

	5.6 Stemming
	5.6.1 Algorithmic stemming
	5.6.2 Stemming with dictionaries
	5.6.3 Overriding the stemming from a token filter

	5.7 Summary

	6 Searching with relevancy
	6.1 How scoring works in Elasticsearch
	6.1.1 How scoring documents works
	6.1.2 Term frequency
	6.1.3 Inverse document frequency
	6.1.4 Lucene’s scoring formula

	6.2 Other scoring methods
	6.2.1 Okapi BM25

	6.3 Boosting
	6.3.1 Boosting at index time
	6.3.2 Boosting at query time
	6.3.3 Queries spanning multiple fields

	6.4 Understanding how a document was scored with explain
	6.4.1 Explaining why a document did not match

	6.5 Reducing scoring impact with query rescoring
	6.6 Custom scoring with function_score
	6.6.1 weight
	6.6.2 Combining scores
	6.6.3 field_value_factor
	6.6.4 Script
	6.6.5 random
	6.6.6 Decay functions
	6.6.7 Configuration options

	6.7 Tying it back together
	6.8 Sorting with scripts
	6.9 Field data detour
	6.9.1 The field data cache
	6.9.2 What field data is used for
	6.9.3 Managing field data

	6.10 Summary

	7 Exploring your data with aggregations
	7.1 Understanding the anatomy of an aggregation
	7.1.1 Structure of an aggregation request
	7.1.2 Aggregations run on query results
	7.1.3 Filters and aggregations

	7.2 Metrics aggregations
	7.2.1 Statistics
	7.2.2 Advanced statistics
	7.2.3 Approximate statistics

	7.3 Multi-bucket aggregations
	7.3.1 Terms aggregations
	7.3.2 Range aggregations
	7.3.3 Histogram aggregations

	7.4 Nesting aggregations
	7.4.1 Nesting multi-bucket aggregations
	7.4.2 Nesting aggregations to get result grouping
	7.4.3 Using single-bucket aggregations

	7.5 Summary

	8 Relations among documents
	8.1 Overview of options for defining relationships among documents
	8.1.1 Object type
	8.1.2 Nested type
	8.1.3 Parent-child relationships
	8.1.4 Denormalizing

	8.2 Having objects as field values
	8.2.1 Mapping and indexing objects
	8.2.2 Searching in objects

	8.3 Nested type: connecting nested documents
	8.3.1 Mapping and indexing nested documents
	8.3.2 Searches and aggregations on nested documents

	8.4 Parent-child relationships: connecting separate documents
	8.4.1 Indexing, updating, and deleting child documents
	8.4.2 Searching in parent and child documents

	8.5 Denormalizing: using redundant data connections
	8.5.1 Use cases for denormalizing
	8.5.2 Indexing, updating, and deleting denormalized data
	8.5.3 Querying denormalized data

	8.6 Application-side joins
	8.7 Summary

	Part 2
	9 Scaling out
	9.1 Adding nodes to your Elasticsearch cluster
	9.1.1 Adding nodes to your cluster

	9.2 Discovering other Elasticsearch nodes
	9.2.1 Multicast discovery
	9.2.2 Unicast discovery
	9.2.3 Electing a master node and detecting faults
	9.2.4 Fault detection

	9.3 Removing nodes from a cluster
	9.3.1 Decommissioning nodes

	9.4 Upgrading Elasticsearch nodes
	9.4.1 Performing a rolling restart
	9.4.2 Minimizing recovery time for a restart

	9.5 Using the _cat API
	9.6 Scaling strategies
	9.6.1 Over-sharding
	9.6.2 Splitting data into indices and shards
	9.6.3 Maximizing throughput

	9.7 Aliases
	9.7.1 What is an alias, really?
	9.7.2 Alias creation

	9.8 Routing
	9.8.1 Why use routing?
	9.8.2 Routing strategies
	9.8.3 Using the _search_shards API to determine where a search is performed
	9.8.4 Configuring routing
	9.8.5 Combining routing with aliases

	9.9 Summary

	10 Improving performance
	10.1 Grouping requests
	10.1.1 Bulk indexing, updating, and deleting
	10.1.2 Multisearch and multiget APIs

	10.2 Optimizing the handling of Lucene segments
	10.2.1 Refresh and flush thresholds
	10.2.2 Merges and merge policies
	10.2.3 Store and store throttling

	10.3 Making the best use of caches
	10.3.1 Filters and filter caches
	10.3.2 Shard query cache
	10.3.3 JVM heap and OS caches
	10.3.4 Keeping caches up with warmers

	10.4 Other performance tradeoffs
	10.4.1 Big indices or expensive searches
	10.4.2 Tuning scripts or not using them at all
	10.4.3 Trading network trips for less data and better distributed scoring
	10.4.4 Trading memory for better deep paging

	10.5 Summary

	11 Administering your cluster
	11.1 Improving defaults
	11.1.1 Index templates
	11.1.2 Default mappings

	11.2 Allocation awareness
	11.2.1 Shard-based allocation
	11.2.2 Forced allocation awareness

	11.3 Monitoring for bottlenecks
	11.3.1 Checking cluster health
	11.3.2 CPU: slow logs, hot threads, and thread pools
	11.3.3 Memory: heap size, field, and filter caches
	11.3.4 OS caches
	11.3.5 Store throttling

	11.4 Backing up your data
	11.4.1 Snapshot API
	11.4.2 Backing up data to a shared file system
	11.4.3 Restoring from backups
	11.4.4 Using repository plugins

	11.5 Summary

	Appendix A—Working with geospatial data
	A.1 Points and distances between them
	A.2 Adding distance to your sort criteria
	A.2.1 Sorting by distance and other criteria at the same time

	A.3 Filter and aggregate based on distance
	A.4 Does a point belong to a shape?
	A.4.1 Bounding boxes
	A.4.2 Geohashes

	A.5 Shape intersections
	A.5.1 Indexing shapes
	A.5.2 Filtering overlapping shapes

	Appendix B—Plugins
	B.1 Working with plugins
	B.2 Installing plugins
	B.3 Accessing plugins
	B.4 Telling Elasticsearch to require certain plugins
	B.5 Removing or updating plugins

	Appendix C—Highlighting
	C.1 Highlighting basics
	C.1.1 What should be passed on to the user
	C.1.2 Too many fields contain highlighted terms

	C.2 Highlighting options
	C.2.1 Size, order, and number of fragments
	C.2.2 Highlighting tags and fragment encoding
	C.2.3 Highlight query

	C.3 Highlighter implementations
	C.3.1 Postings Highlighter
	C.3.2 Fast Vector Highlighter

	Appendix D—Elasticsearch monitoring plugins
	D.1 Bigdesk: visualize your cluster
	D.2 ElasticHQ: monitoring with management
	D.3 Head: advanced query building
	D.4 Kopf: snapshots, warmers, and percolators
	D.5 Marvel: fine-grained analysis
	D.6 Sematext SPM: the Swiss Army knife

	Appendix E—Turning search upside down with the percolator
	E.1 Percolator basics
	E.1.1 Define a mapping, register queries, then percolate documents
	E.1.2 Percolator under the hood

	E.2 Performance tips
	E.2.1 Options for requests and replies
	E.2.2 Separating and filtering percolator queries

	E.3 Functionality tricks
	E.3.1 Highlighting percolated documents
	E.3.2 Ranking matching queries
	E.3.3 Aggregations on matching query metadata

	Appendix F—Using suggesters for autocomplete and did-you-mean functionality
	F.1 Did-you-mean suggesters
	F.1.1 Term suggester
	F.1.2 Phrase suggester

	F.2 Autocomplete suggesters
	F.2.1 Completion Suggester
	F.2.2 Context Suggester

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Back cover

